Skip to main content
Log in

Face to phase: pitfalls in time delay estimation from coherency phase

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

Coherency phase is often interpreted as a time delay reflecting a transmission delay between spatially separated neural populations. However, time delays estimated from corticomuscular coherency are conflicting and often shorter than expected physiologically. Recent work suggests that corticomuscular coherence is influenced by afferent sensory feedback and bidirectional interactions. We investigated how bidirectional interaction affects time delay estimated from coherency, using a feedback model of the corticomuscular system. We also evaluated the effect of bidirectional interaction on two popular directed connectivity measures: directed transfer function (DTF) and partial directed coherence (PDC). The model is able to reproduce the range of time delays found experimentally from coherency phase by varying the strengths of the efferent and afferent pathways and the recording of sensory feedback in the cortical signal. Both coherency phase and DTF phase were affected by sensory feedback, resulting in an underestimation of the transmission delay. Coherency phase was altered by the recording of sensory feedback in the cortical signals and both measures were affected by the presence of a closed loop feedback system. Only PDC phase led to the correct estimation of efferent transmission delay in all simulated model configurations. Coherency and DTF phase should not be used to estimate transmission delays in neural networks as the estimated time delays are meaningless in the presence of sensory feedback and closed feedback loops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbruzzese, G., Berardelli, A., Rothwell, J.C., Day, B.L., Marsden, C.D. (1985). Cerebral potentials and electromyographic responses evoked by stretch of wrist muscles in man. Experimental Brain Research, 58, 544–551.

    Article  CAS  PubMed  Google Scholar 

  • Akaike, H. (1971). Autoregressive model fitting for control. Annals of the Institute of Statistical Mathematics, 23(2), 163–180.

    Article  Google Scholar 

  • Astolfi, L., Cincotti, F., Mattia, D., Marciani, M.G., Baccalá, L.A., de Vico Fallani, F., Salinari, S., Ursino, M., Zavaglia, M., Ding, L., Edgar, J.C., Miller, G.A., He, B., Babiloni, F. (2007). Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Human Brain Mapping, 28(2), 143–157.

    Article  PubMed  Google Scholar 

  • Baccalá, L.A., & Sameshima, K. (2001). Partial directed coherence: a new concept in neural structure determination. Biological Cybernetics, 84(6), 463–474.

    Article  PubMed  Google Scholar 

  • Baker, S.N. (2007). Oscillatory interactions between sensorimotor cortex and the periphery. Current Opinion in Neurobiology, 17(6), 649–655.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Baker, S.N., Chiu, M., Fetz, E.E. (2006). Afferent encoding of central oscillations in the monkey arm. Journal of Neurophysiology, 95(6), 3904–3910.

    Article  PubMed  Google Scholar 

  • Brown, P., Salenius, S., Rothwell, J.C., Hari, R. (1998). Cortical Correlate of the Piper Rhythm in Humans. Journal of Neurophysiology, 80, 2911–2917.

    CAS  PubMed  Google Scholar 

  • Florin, E., Gross, J., Pfeifer, J., Fink, G.R., Timmermann, L. (2010). The effect of filtering on Granger causality based multivariate causality measures. Neuroimage, 50, 577–588.

    Article  PubMed  Google Scholar 

  • Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends in Cognitive Sciences, 9(10), 474–480.

    Article  PubMed  Google Scholar 

  • Granger, C. (1969). Investigating causal relations by econometric models and cross-spectral methods. Econometrica, 37(3), 424–438.

    Article  Google Scholar 

  • Gross, J., Tass, P. A., Salenius, S., Hari, R., Freund, H.J., Schnitzler, A. (2000). Cortico-muscular synchronization during isometric muscle contraction in humans as revealed by magnetoencephalography. Journal of Physiology, 527(Pt 3), 623–631.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grosse, P., Guerrini, R., Parmeggiani, L., Bonanni, P., Pogosyan, A., Brown, P. (2003). Abnormal corticomuscular and intermuscular coupling in high-frequency rhythmic myoclonus. Brain, 126(Pt 2), 326–342.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, D.M., Rosenberg, J.R., Amjad, A.M., Breeze, P., Conway, B.A., Farmer, S.F. (1995). A framework for the analysis of mixed time series/point process data–theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. Progress in Biophysics and Molecular Biology, 64(2–3), 237–278.

    Article  CAS  PubMed  Google Scholar 

  • Halliday, D.M., Conway, B.A., Farmer, S.F., Rosenberg, J.R. (1998). Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. Neuroscience Letters, 241(1), 5–8.

    Article  CAS  PubMed  Google Scholar 

  • Haufe, S., Nikulin, V.V., Müller, K.R., Nolte, G. (2013). A critical assessment of connectivity measures for EEG data: a simulation study. NeuroImage, 64, 120–133.

    Article  PubMed  Google Scholar 

  • Horwitz, B. (2003). The elusive concept of brain connectivity. Neuroimage, 19(2 Pt 1), 466–470.

    Article  PubMed  Google Scholar 

  • Jain, S., Gourab, K., Schindler-Ivens, S., Schmit, B.D. (2012). EEG during pedaling: evidence for cortical control of locomotor tasks. Clinical Neurophysiology.

  • Kamiński, M., & Blinowska, K.J. (1991). A new method of the description of the information flow in the brain structures. Biological Cybernetics, 65(3), 203–210.

    Article  PubMed  Google Scholar 

  • Lindemann, M., Raethjen, J., Timmer, J., Deuschl, G., Pfister, G. (2001). Delay estimation for cortico-peripheral relations. Journal of Neuroscience Methods, 111(2), 127–139.

    Article  CAS  PubMed  Google Scholar 

  • Ljung, L. (1999). System Identification: Theory for the users, 2nd ed. Prentice Hall PTR.

  • Mima, T., Steger, J., Schulman, A.E., Gerloff, C., Hallett, M. (2000). Electroencephalographic measurement of motor cortex control of muscle activity in humans. Clinical Neurophysiology, 111(2), 326–337.

    Article  CAS  PubMed  Google Scholar 

  • Mima, T., Matsuoka, T., Hallett, M. (2001). Information flow from the sensorimotor cortex to muscle in humans. Clinical Neurophysiology, 112(1), 122–126.

    Article  CAS  PubMed  Google Scholar 

  • Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology, 115(10), 2292–2307.

    Article  PubMed  Google Scholar 

  • Nolte, G., Ziehe, A., Nikulin, V.V., Schlögl, A., Krämer, N., Brismar, T., Müller, K.R. (2008). Robustly estimating the flow direction of information in complex physical systems. Physical Review Letters, 100(23), 234–101.

    Article  Google Scholar 

  • Petersen, T.H., Willerslev-Olsen, M., Conway, B.A., Nielsen, J.B. (2012). The motor cortex drives the muscles during walking in human subjects. Journal of Physiology, 590(Pt 10), 2443–2452.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pintelon, R., & Schoukens, J. (2001). System identification. A frequency domain approach. Piscataway, NJ: IEEE Press.

    Book  Google Scholar 

  • Pohja, M., & Salenius, S. (2003). Modulation of cortex-muscle oscillatory interaction by ischaemia-induced deafferentation. Neuroreport, 14(3), 321–324.

    Article  PubMed  Google Scholar 

  • Porcaro, C., Coppola, G., Pierelli, F., Seri, S., Di Lorenzo, G., Tomasevic, L., Salustri, C., Tecchio, F. (2013). Multiple frequency functional connectivity in the hand somatosensory network: an EEG study. Clinical Neurophysiology, 124(6), 1216–1224.

    Article  PubMed  Google Scholar 

  • Riddle, C.N., & Baker, S.N. (2005). Manipulation of peripheral neural feedback loops alters human corticomuscular coherence. Journal of Physiology, 566(Pt 2), 625–639.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Riddle, C.N., Baker, M.R., Baker, S.N. (2004). The effect of carbamazepine on human corticomuscular coherence. Neuroimage, 22(1), 333–340.

    Article  PubMed  Google Scholar 

  • Rosenberg, J.R., Amjad, A.M., Breeze, P., Brillinger, D.R., Halliday, D.M. (1989). The Fourier approach to the identification of functional coupling between neuronal spike trains. Progress in Biophysics and Molecular Biology, 53(1), 1–31.

    Article  CAS  PubMed  Google Scholar 

  • Rothwell, J.C., Thompson, P.D., Day, B.L., Boyd, S., Marsden, C.D. (1991). Stimulation of the human motor cortex through the scalp. Experimental Physiology, 76, 159–200.

    CAS  PubMed  Google Scholar 

  • Schneider, T., & Neumaier, A. (2001). Algorithm 808: ARfit—a matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Transactions on Mathematical Software, 27(1), 58–65.

    Article  Google Scholar 

  • Schouten, A.C., & Campfens, S.F. (2012). Directional coherence disentangles causality within the sensorimotor loop, but cannot open the loop. Journal of Physiology, 590(Pt 10), 2523–2529.

    Google Scholar 

  • Stam, C.J., & van Straaten, E.C.W. (2012). The organization of physiological brain networks. Clinical Neurophysiology, 123(6), 1067–1087.

    Article  CAS  PubMed  Google Scholar 

  • Tallon-Baudry, C., Bertrand, O., Fischer, C. (2001). Oscillatory synchrony between human extrastriate areas during visual short-term memory maintenance. Journal of Neuroscience, 21(20), RC177.

    CAS  PubMed  Google Scholar 

  • Varela, F., Lachaux, J.P., Rodriguez, E., Martinerie, J. (2001). The brainweb: phase synchronization and large-scale integration. Nature Reviews Neuroscience, 2(4), 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Weiss, S., & Mueller, H.M. (2003). The contribution of EEG coherence to the investigation of language. Brain and Language, 85(2), 325–343.

    Article  PubMed  Google Scholar 

  • Williams, E.R., Soteropoulos, D.S., Baker, S.N. (2009). Coherence between motor cortical activity and peripheral discontinuities during slow finger movements. Journal of Neurophysiology, 102(2), 1296–1309.

    Article  PubMed Central  PubMed  Google Scholar 

  • Witham, C.L., Wang, M., Baker, S.N. (2007). Cells in somatosensory areas show synchrony with beta oscillations in monkey motor cortex. The European Journal of Neuroscience, 26(9), 2677–2686.

    Article  PubMed Central  PubMed  Google Scholar 

  • Witham, C.L., Riddle, C.N., Baker, M.R., Baker, S.N. (2011). Contributions of descending and ascending pathways to corticomuscular coherence in humans. Journal of Physiology, 589(Pt 15), 3789–3800.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Floor Campfens.

Additional information

Action Editor: Abraham Zvi Snyder

Rights and permissions

Reprints and permissions

About this article

Cite this article

Campfens, S.F., van der Kooij, H. & Schouten, A.C. Face to phase: pitfalls in time delay estimation from coherency phase. J Comput Neurosci 37, 1–8 (2014). https://doi.org/10.1007/s10827-013-0487-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-013-0487-z

Keywords

Navigation