Skip to main content
Log in

Effects of heterogeneity in synaptic conductance between weakly coupled identical neurons

  • Published:
Journal of Computational Neuroscience Aims and scope Submit manuscript

Abstract

A significant degree of heterogeneity in synaptic conductance is present in neuron to neuron connections. We study the dynamics of weakly coupled pairs of neurons with heterogeneities in synaptic conductance using Wang–Buzsaki and Hodgkin–Huxley model neurons which have Types I and II excitability, respectively. This type of heterogeneity breaks a symmetry in the bifurcation diagrams of equilibrium phase difference versus the synaptic rate constant when compared to the identical case. For weakly coupled neurons coupled with identical values of synaptic conductance a phase locked solution exists for all values of the synaptic rate constant, α. In particular, in-phase and anti-phase solutions are guaranteed to exist for all α. Heterogeneity in synaptic conductance results in regions where no phase locked solution exists and the general loss of the ubiquitous in-phase and anti-phase solutions of the identically coupled case. We explain these results through examination of interaction functions using the weak coupling approximation and an in-depth analysis of the underlying multiple cusp bifurcation structure of the systems of coupled neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bose, A., Kopell, N., & Terman, D. (2000). Almost-synchronous solutions for mutually coupled excitatory neurons. Physica D, 140, 69–94.

    Article  Google Scholar 

  • Bou-Flores, C., & Berger, A. J. (2001). Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization. Journal of Neurophysiology, 85, 1543–1551.

    PubMed  CAS  Google Scholar 

  • Crawford, J. D. (1991). Introduction to bifurcation theory. Reviews of Modern Physics, 63(4), 991–1037.

    Article  Google Scholar 

  • Ermentrout, G. B. (2002). Simulating, analyzing, and animating dynamical systems: A guide to XPPAUT for researchers and students. SIAM.

  • Ermentrout, G. B., & Kopell, N. (1990). Oscillator death in systems of coupled neural oscillators. SIAM Journal on Applied Mathematics, 50(1), 125–146.

    Article  Google Scholar 

  • Hansel, D., & Mato, G. (1993). Patterns of synchrony in a heterogeneous Hodgkin–Huxley neural network with weak coupling. Physica A, 200, 662–669.

    Article  Google Scholar 

  • Hansel, D., Mato, G., & Meunier, C. (1993). Phase dynamics for weakly coupled Hodgkin–Huxley neurons. Europhysics Letters, 23, 367–372.

    Article  CAS  Google Scholar 

  • Hansel, D., Mato, G., & Meunier, C. (1995). Synchrony in excitatory neural networks. Neural Computation, 7(2), 307–337.

    Article  PubMed  CAS  Google Scholar 

  • Izhikevich, E. (1998). Multiple cusp bifurcations. Neural Networks, 11, 495–508.

    Article  PubMed  Google Scholar 

  • Izhikevich, E. (2007). Dynamical systems in neuroscience. MIT Press.

  • Izhikevich, E., & Hoppensteadt, F. (1997). Weakly connected neural networks. New York: Springer.

    Google Scholar 

  • Kuramoto, Y. (1984). Checmical oscillations, waves and turbulence. New York: Springer.

    Google Scholar 

  • Li, Y., Wang, Y., & Miura, R. (2003). Clustering in small networks of excitatory neurons with heterogeneous coupling strengths. Journal of Computational Neuroscience, 14(2), 139–159.

    Article  PubMed  Google Scholar 

  • Mellen, N., Janczewski, W., Bocchiaro, C., & Feldman, J. L. (2003). Opiod induced quantal slowing reveals dual networks for repiratory rhythm generation. Neuron, 37, 821–826.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, S., Koninck, Y., & Sejnowski, T. (2008). Biophysical basis for three distinct mechanisms for action potential initiation. PLoS Biology, 4(10), e1000198.

    Article  Google Scholar 

  • Preyer, A., & Butera, R. J. (2005). Neuronal oscillators in Aplysia californica that demonstrate weak coupling in vitro. Physical Review Letters, 95, 138103.

    Article  PubMed  Google Scholar 

  • Purvis, L. K., Smith, J. C., Koizumi, H., & Butera, R. J. (2007). Bursters increase the robustness of rhythm generation in an excitatory network. Journal of Neurophysiology, 97, 1515–1526.

    Article  PubMed  CAS  Google Scholar 

  • Rinzel, J., & Ermentrout, G. B. (1989). Methods in neuronal modeling (pp. 135–169). MIT Press.

  • Sieling, F., Canavier, C., & Prinz, A. (2009). Predictions of phase-locking in excitatory hybrid networks: Excitation does not promote phase-locking in pattern-generating networks as reliably as inhibition. Journal of Neurophysiology, 102, 69–84.

    Article  PubMed  Google Scholar 

  • Smith, J. C., Ellenberger, H. H., Ballanyi, K., Richter, D. W., & Feldman, J. L. (1991). Pre-Bötzinger complex: A brainstem region that may generate respiratory rhythm in mammals. Science, 254, 726–729.

    Article  PubMed  CAS  Google Scholar 

  • Song, S., Sjöström, P. J., Reigl, M., Nelson, S., & Chklovskii, D. (2005). Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biology, 3(3), e68.

    Article  Google Scholar 

  • Terman, D., Kopell, N., & Bose, A. (1998). Dynamics of two mutually coupled slow inhibitory neurons. Physica D, 117, 241–275.

    Article  Google Scholar 

  • Van Vreeswijk, C., Abbott, L., & Ermentrout, G. B. (1994). When inhibition not excitation synchronizes neural firing. Journal of Computational Neuroscience, 1, 313–321.

    Article  PubMed  Google Scholar 

  • White, J., Chow, C., Ritt, J., Soto-Tervino, C., & Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (R01-H088886, PI: Butera; and R01-NS054281, PI: Canavier, subcontract to R. Butera).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Butera.

Additional information

Action Editor: David Terman

Appendices

Appendix A: Hodgkin–Huxley model

The equations for the Hodgkin–Huxley Model are:

$$\begin{array}{rll} C_m\frac{dV}{dt}&=&-g_Kn^4(V-E_K)-g_{\rm Na}m^3h(V-E_{\rm Na})\\ &&-\,g_L(V-E_L)+I_{\rm stim} \end{array}$$
(7)
$$ \frac{dn}{dt}=\alpha_n(1-n)-\beta_nn $$
(8)
$$ \frac{dm}{dt}=\alpha_m(1-m)-\beta_mm $$
(9)
$$ \frac{dh}{dt}=\alpha_h(1-h)-\beta_hh $$
(10)
$$ \alpha_n=0.01\frac{V+55}{1-\exp{\frac{-(V+55)}{10}}} $$
(11)
$$ \beta_n=0.125\exp{\frac{-(V+65)}{80}} $$
(12)
$$ \alpha_m=0.1\frac{V+40}{1-\exp{\frac{-(V+40)}{10}}} $$
(13)
$$ \beta_m=4.0\exp{\frac{-(V+65)}{18}} $$
(14)
$$ \alpha_h=0.07\exp{\frac{-(V+65)}{20}} $$
(15)
$$ \beta_h=\frac{1}{1-\exp{\frac{-(V+35)}{10}}} $$
(16)

With \(g_{\rm Na}=120\:\frac{\rm mS}{{\rm cm}^2}\), \(g_K=36\:\frac{\rm mS}{{\rm cm}^2}\), \(g_L=0.3\:\frac{\rm mS}{{\rm cm}^2}\), \(E_{\rm Na}=50\:{\rm mV}\), \(E_K=-77\:{\rm mV}\), \(V_L=-54.6\:{\rm mV}\), \(C_m=1\:\frac{\mu \rm F}{{\rm cm}^2}\), \(I_{\rm stim}=10\:\frac{\mu \rm A}{{\rm cm}^2}\).

Appendix B: Wang–Buzsaki model

The equations for the Wang–Buzsaki Model are:

$$ \begin{array}{rll} C_m\frac{dV}{dt}&=&-g_Kn^4(V-E_K)-g_{\rm Na}m_{\infty}^3h(V-E_{\rm Na})\\ &&-\,g_L(V-E_L)+I_{\rm stim} \end{array} $$
(17)
$$ \frac{dn}{dt}=\phi(\alpha_n(1-n)-\beta_nn) $$
(18)
$$ \frac{dh}{dt}=\phi(\alpha_h(1-h)-\beta_hh) $$
(19)
$$ m_{\infty}=\frac{\alpha_m}{\alpha_m+\beta_m} $$
(20)
$$ \alpha_m=\frac{-0.1(V+35)}{\exp{-0.1(V+35)}-1} $$
(21)
$$ \beta_m=4\exp{-(V+60)/18} $$
(22)
$$ \alpha_h=0.07\exp{-(V+58)/20} $$
(23)
$$ \beta_h=\frac{1}{\exp{-0.1(V+28)}+1} $$
(24)
$$ \alpha_n=\frac{-0.1(V+34)}{\exp{-0.1(V+34)}-1} $$
(25)
$$ \beta_n=0.125\exp{-(V+44)/80} $$
(26)

With \(g_{\rm Na}=35\:\frac{\rm mS}{{\rm cm}^2}\), \(g_K=9\:\frac{\rm mS}{{\rm cm}^2}\), \(g_L=0.1\:\frac{\rm mS}{{\rm cm}^2}\), \(E_{\rm Na}=55\:{\rm mV}\), \(E_K=-90\:{\rm mV}\), \(V_L=-65\:{\rm mV}\), \(C_m=1\:\frac{\mu \rm F}{{\rm cm}^2}\), \(I_{\rm stim}=10\:\frac{\mu \rm A}{{\rm cm}^2}\), φ = 5.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bradley, P.J., Wiesenfeld, K. & Butera, R.J. Effects of heterogeneity in synaptic conductance between weakly coupled identical neurons. J Comput Neurosci 30, 455–469 (2011). https://doi.org/10.1007/s10827-010-0270-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10827-010-0270-3

Keywords

Navigation