Skip to main content
Log in

Performance analysis of all-optical full-adder based on two-dimensional photonic crystals

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

An all-optical full-adder device is implemented using a two-dimensional photonic crystal waveguide. The design of the full-adder circuit is based on a beam-interference principle that utilizes a combination of Y- and T-shaped waveguide structures formed from silicon dielectric rods in air background. Available optical full-adder circuits are designed with either a semiconductor optical amplifier (SOA) or a nonlinear material. The proposed circuit has been implemented without using any nonlinear material and SOA to overcome previous limitations. Various combinations of inputs of the full-adder are used and optimized through multiple simulations. The difference in the output between logic “0” and “1” has been optimized to reduce the error probability in their identification. The simulated outputs are also verified with the help of the electric field intensity distribution at wavelengths near 1550 nm for different input combinations of the full-adder. Moreover, the proposed full-adder structure has very fast response time of 1.06 ps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Joannopoulos, J.D., Meade, R.D., Winn, J.N.: Photonic Crystals: Molding the Flow of Light, 2nd edn. Princeton University Press, Princeton (1995)

    MATH  Google Scholar 

  2. Noda, S., Baba, T.: Roadmap on Photonic Crystal. Kluwer Academic Publishers, Dordrecht (2003)

    Book  Google Scholar 

  3. Danaie, M., Kaatuzian, H.: Improvement of power coupling in a nonlinear photonic crystal directional coupler switch. Photonics Nanostruct. Fundam. Appl. 9, 70–81 (2011)

    Article  Google Scholar 

  4. Danaie, M., Kaatuzian, H.: Design of a photonic crystal differential phase comparator for a Mach–Zehnder switch. J. Opt. 13, 1–7 (2011)

    Article  Google Scholar 

  5. Danaie, M., Kaatuzian, H.: Bandwidth improvement for a photonic crystal optical Y-splitter. J. Opt. Soc. Korea 15(3), 283–288 (2011)

    Article  Google Scholar 

  6. Shinya, A., Takara, H., Kawanishi, S.: All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14(3), 1230–1235 (2006)

    Article  Google Scholar 

  7. Geshiro, T.M., Kitamura, T., Nishida, K., Sawa, S.: All-optical logic gates containing a two-mode nonlinear waveguide. IEEE J. Quantum Electron. 38(4), 37–46 (2002)

    Google Scholar 

  8. Andalib, P., Granpayeh, N.: All-optical ultra-compact photonic crystal AND gate based on nonlinear ring resonators. J. Opt. Soc. Am. B 26(1), 10–16 (2009)

    Article  Google Scholar 

  9. Soto, F.C., et al.: All-optical switching structure based on a photonic crystal directional coupler. Opt. Express 12(1), 161–167 (2004)

    Article  Google Scholar 

  10. Johnson, S.G., Villeneuve, P.R., Fan, S., Joannopoulos, J.D.: Linear waveguides in photonic-crystal slabs. Phys. Rev. B 62, 8212–8222 (2000)

    Article  Google Scholar 

  11. Centeno, E., Felbacq, D.: Optical bistability in finite-size nonlinear bi-dimensional photonic crystals doped by a microcavity. Phys. Rev. B Condens. Matter 62, 7683–7686 (2000)

    Article  Google Scholar 

  12. Shinya, A., Tanabe, T., Kuramochi, E., Notomi, M.: All-optical switch and digital light processing using photonic crystals. NTT Tech. Rev. 3(12), 61–68 (2005)

    Google Scholar 

  13. Hu, X., et al.: An optical switching in two dimensional \(\text{ Ce:BaTiO }_3\) nonlinear photonic crystal. Opt. Commun. 237(4–6), 371–377 (2004)

    Article  Google Scholar 

  14. Tanaka, Y., et al.: Optical bistable operations in AlGaAs-based photonic crystal slab microcavity at telecommunication wavelengths. IEEE Photonics Technol. Lett. 18(19), 1996–1998 (2006)

    Article  Google Scholar 

  15. Belotti, M., et al.: All-optical switching in 2D silicon photonic crystals with low loss waveguides and optical cavities. Opt. Exp. 16(15), 11624–11636 (2008)

    Google Scholar 

  16. Salmanpoura, A., Nejada, S.Md, Bahramib, Ali: All-optical photonic crystal AND, XOR, and OR logic gates using nonlinear Kerr effect and ring resonators. J. Mod. Opt. 62(9), 693–700 (2015)

    Article  MathSciNet  Google Scholar 

  17. Nguyen, H.C., Hashimoto, S., Shinkawa, M., Baba, T.: Compact and fast photonic crystal silicon optical modulators. Opt. Express 20(20), 13000–13007 (2012)

    Article  Google Scholar 

  18. Zhu, Z.H., et al.: High-contrast light-by-light switching and AND gate based on nonlinear photonic crystals. Opt. Exp. 14(5), 1783–1788 (2006)

    Article  Google Scholar 

  19. Jung, Y.J., et al.: Reconfigurable all-optical logic AND, NAND, OR,NOR, XOR and XNOR gates implemented by photonic crystal nonlinear cavities. In: Conference on Lasers and Electro Optics and the Pacific Rim, OSA (2009)

  20. Kosaka, H., et al.: Self-collimating phenomena in photonic crystals. Appl. Phys. Lett. 74(9), 1212–1214 (1999)

    Article  Google Scholar 

  21. Rostami, A., Nazari, F., Banaei, H.A., Bahrami, A.: A novel proposal for DWDM demultiplexer design using modified-T photonic crystal structure. Photonics Nanostruct. Fundam. Appl. 8, 14–22 (2010)

    Article  Google Scholar 

  22. Liu, Q., et al.: All-optical half adder based on cross structures in two-dimensional photonic crystals. Opt. Express 16(23), 18992–19000 (2008)

    Article  Google Scholar 

  23. Jiang, Y.C., Liu, S.B., Zhang, H.F., Kong, X.K.: Realization of all-optical half-adder based on self-collimated beams by two-dimensional photonic crystals. Opt. Commun. 348, 90–94 (2015)

    Article  Google Scholar 

  24. Menezes, J.W.M., et al.: All-optical half-adder using all-optical XOR and AND gates for optical generation of “sum" and "carry". Fiber Integr. Opt. 29(4), 254–271 (2010)

    Article  Google Scholar 

  25. Shaik, E.H., Rangaswamy, N.: Improved design of all-optical photonic crystal logic gates using T-shaped waveguide. Opt. Quantum Electron. 63(10), 11082-015 (2016)

    Google Scholar 

  26. Karkhanehchi, M., Parandin, F., Zahedi, A.: Design of an all optical half-adder based on 2D photonic crystals. Photonic Netw. Commun. 33(2), 159–165 (2017)

    Article  Google Scholar 

  27. Alipour-Banaei, H., Seif-Dargahi, H.: Photonic crystal based 1-bit full-adder optical circuit by using ring resonators in a nonlinear structure. Photonics Nanostruct. Fundam. Appl. 24, 29–34 (2017)

    Article  Google Scholar 

  28. Kumar, S., Singh, L., Raghuwanshi, S.K., Chen, N.K.: Design of full-adder and full-subtractor using metal-insulator-metal plasmonic waveguides. Plasmonics 11, 1–11 (2016)

    Article  Google Scholar 

  29. Kumar, A., Kumar, S., Raghuwanshi, S.K.: Implementation of full-adder and full-subtractor based on electro-optic effect in Mach–Zehnder interferometers. Opt. Commun. 324, 93–107 (2014)

    Article  Google Scholar 

  30. Kumar, S.: Reversible full-adder using lithium-niobate based Peres gate. In: International Conference on Fiber Optics and Photonics, OSA, pp. 1–3 (2016)

  31. Esmaeili, S.A., Cherri, A.K.: Photonic crystal-based all-optical arithmetic circuits without SOA-based switches. Optik 125, 3710–3713 (2014)

    Article  Google Scholar 

  32. Huang, Z., Yuan, S., Wang, Y., Huang, Q., Xia, J.: Tailoring the structure of multilayered hybrid silicon vertical waveguide to achieve anomalous dispersion. IEEE Photonics J. 9(3), 1–9 (2017)

    Google Scholar 

  33. Turner, A.C., et al.: Tailored anomalous group-velocity dispersion in silicon channel waveguides. Opt. Exp. 14(10), 4357–4362 (2006)

    Article  Google Scholar 

  34. Xavier, S.C., Arunachalam, K., Caroline, E., Johnson, W.: Design of two-dimensional photonic crystal-based all-optical binary adder. Opt. Eng. 52, 1–6 (2013)

    Article  Google Scholar 

  35. Tang, C., et al.: Design of all-optical logic gates avoiding external phase shifters in a two-dimensional photonic crystal based on multi-mode interference for BPSK signals. Opt. Commun. 316, 49–55 (2014)

    Article  Google Scholar 

  36. D’souza, N.M., Mathew, V.: Interference based square lattice photonic crystal logic gates working with different wavelengths. Opt. Laser Technol. 80, 214–219 (2016)

    Article  Google Scholar 

  37. Shaik, E.H., Rangaswamy, N.: Multi-mode interference-based photonic crystal logic gates with simple structure and improved contrast ratio. Photonic Netw. Commun. 34, 140–148 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Sandip Swarnakar would like to thank Dr. Santasri Koley for help during manuscript revision. The authors would like to thank Prof. K. K. Raina, Vice Chancellor of DIT University, India, for encouragement and support during the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santosh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swarnakar, S., Kumar, S. & Sharma, S. Performance analysis of all-optical full-adder based on two-dimensional photonic crystals. J Comput Electron 17, 1124–1134 (2018). https://doi.org/10.1007/s10825-018-1177-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-018-1177-x

Keywords

Navigation