Skip to main content
Log in

Efficient numerical procedure for the determination of the wave function-independent terms in longitudinal optical phonon scattering rates formulated in the Fourier domain

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A recently developed Fourier-transform-based formulation of the longitudinal optical phonon scattering rates in heterostructures allows us to separate the wave functions from multidimensional integrals, which depend on the intersubband transition energy, the chemical potential, and the electron temperature. Here, we discuss an efficient determination of these integrals and an automatic fitting procedure in order to provide a compact table of pre-calculated integrals. As a result, computation times on a scale of minutes for the scattering rates are achieved for any reasonable set of parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Faist, J., Capasso, F., Sivco, D.L., Sirtori, C., Hutchinson, A.L., Cho, A.Y.: Quantum cascade laser. Science 264, 553–556 (1994). doi:10.1126/science.264.5158.553

    Article  Google Scholar 

  2. Köhler, R., Tredicucci, A., Beltram, F., Beere, H.E., Linfield, E.H., Davies, A.G., Ritchie, D.A., Iotti, R.C., Rossi, F.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002). doi:10.1038/417156a

    Article  Google Scholar 

  3. Harrison, P.: Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures. Wiley, Chichester (2005)

    Book  Google Scholar 

  4. Williams, B.S.: Terahertz quantum-cascade lasers. Nat. Photon. 1, 517–525 (2007). doi:10.1038/nphoton.2007.166

    Article  Google Scholar 

  5. Jirauschek, C., Kubis, T.: Modeling techniques for quantum cascade lasers. Appl. Phys. Rev. 1, 011307 (2014). doi:10.1063/1.4863665

    Article  Google Scholar 

  6. Lü, X., Schrottke, L., Luna, E., Grahn, H.T.: Efficient simulation of the impact of interface grading on the transport and optical properties of semiconductor heterostructures. Appl. Phys. Lett. 104, 232106 (2014). doi:10.1063/1.4882653

    Article  Google Scholar 

  7. Schrottke, L., Lü, X., Grahn, H.T.: Fourier transform-based scattering-rate method for self-consistent simulations of carrier transport in semiconductor heterostructures. J. Appl. Phys. 117, 154309 (2015). doi:10.1063/1.4918671

    Article  Google Scholar 

  8. Lü, X., Schrottke, L., Grahn, H.T.: Fourier-transform-based model for carrier transport in semiconductor heterostructures: Longitudinal optical phonon scattering. J. Appl. Phys. 119, 214302 (2016). doi:10.1063/1.4952741

    Article  Google Scholar 

  9. Schrottke, L., Giehler, M., Wienold, M., Hey, R., Grahn, H.T.: Compact model for the efficient simulation of the optical gain and transport properties in THz quantum-cascade lasers. Semicond. Sci. Technol. 25, 045025 (2010). doi:10.1088/0268-1242/25/4/045025

    Article  Google Scholar 

  10. Taj, D., Iotti, R.C., Rossi, F.: Microscopic modeling of energy relaxation and decoherence in quantum optoelectronic devices at the nanoscale. Eur. Phys. J. B 72, 305–322 (2009). doi:10.1140/epjb/e2009-00363-4

    Article  Google Scholar 

  11. Arumugam, K., Godunov, A., Ranjan, D., Terzić, B., Zubair, M.: A memory efficient algorithm for adaptive multidimensional integration with multiple GPUs. In: 20th Annual International Conference on High Performance Computing, pp. 169–175 (2013). doi:10.1109/HiPC.2013.6799120

  12. Berntsen, J., Espelid, T.O., Genz, A.: An adaptive algorithm for the approximate calculation of multiple integrals. ACM Trans. Math. Software 17, 437–451 (1991). doi:10.1145/210232.210233

    Article  MathSciNet  MATH  Google Scholar 

  13. Hahn, T.: Cuba-a library for multidimensional numerical integration. Comput. Phys. Commun. 168, 78–95 (2005). doi:10.1016/j.cpc.2005.01.010

  14. Berntsen, J., Espelid, T.O., Genz, A.: Algorithm 698: Dcuhre: an adaptive multidimensional integration routine for a vector of integrals. ACM Trans. Math. Software 17, 452–456 (1991). doi:10.1145/210232.210234

  15. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes in Fortran 90: The art of Parallel Scientific Computing. Press Syndicate of the University of Cambridge, Cambridge (2002)

    MATH  Google Scholar 

  16. Vurgaftman, I., Meyer, J.R., Ram-Mohan, L.R.: Band parameters for iiiv compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001). doi:10.1063/1.1368156

    Article  Google Scholar 

  17. Schrottke, L., Lü, X., Rozas, G., Biermann, K., Grahn, H.T.: Terahertz GaAs/AlAs quantum-cascade lasers. Appl. Phys. Lett. 108, 102102 (2016). doi:10.1063/1.4943657

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank O. Marquardt for a careful reading of the manuscript and G. Rozas for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. Lü.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lü, X., Schrottke, L. & Grahn, H.T. Efficient numerical procedure for the determination of the wave function-independent terms in longitudinal optical phonon scattering rates formulated in the Fourier domain. J Comput Electron 15, 1505–1510 (2016). https://doi.org/10.1007/s10825-016-0902-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-016-0902-6

Keywords

Navigation