Skip to main content
Log in

EE-BESD: molecular FET modeling for efficient and effective nanocomputing design

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

Molecular transistor is a good candidate as substitute of CMOS device due to small size, expected good performance and suitability to be included in high density-circuits. To date a lot of effort has been carried out to understand the conduction properties in molecular devices. However, minor effort has been devoted to reduce their computational complexity to obtain a compact molecular model. First-principle based methods frequently used are highly computational demanding for a single device, thus they are not suitable for complex circuit design. In this paper we present an accurate and at the same time computationally efficient method (named Efficient and Effective model based on Broadening level, Evaluation of peaks, SCF and discrete levels, ee-besd) to calculate the electron transport characteristics of molecular transistors in presence of applied bias and gate voltages. The results obtained show a remarkable improvement in terms of computational time with respect to existing approaches, while maintaining a very good accuracy. Finally, the ee-besd model has been embedded in a circuit level simulator in order to show its functionalities and, particularly, its computational cost. This is shown to be affordable even for circuits based on a high number of devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Tsui, R.: Molecular-scale engineering for future electronics. In: IEEE International Symposium on Circuits and Systems, 2002. ISCAS 2002, vol. 2, pp. II–41. IEEE, (2002)

  2. Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular qca wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012)

    Article  Google Scholar 

  3. Goldstein, S.C., Budiu, M.: Molecules, gates, circuits, computers. Molecular Nanoelectronics. American Scientific Publishers, Stevenson Ranch (2003)

    Google Scholar 

  4. Pulimeno, A., Graziano, M., Piccinini, G.: Molecule interaction for QCA computation. In: IEEE International Conference on Nanotechnology, pp. 1–5, (2012)

  5. Haselman, M., Hauck, S.: The future of integrated circuits: a survey of nanoelectronics. Proc. IEEE 98(1), 11–38 (2010)

    Article  Google Scholar 

  6. Awais, M., Vacca, M., Graziano, M., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12(3), 368–377 (2013)

    Article  Google Scholar 

  7. Stan, M.R., Franzon, P.D., Goldstein, S.C., Lach, J.C., Ziegler, M.M.: Molecular electronics: from devices and interconnect to circuits and architecture. Proc. IEEE 91(11), 1940–1957 (2003)

    Article  Google Scholar 

  8. Condo, C., Martina, M., Masera, G.: lsi implementation of a multi-mode turbo/ldpc decoder architecture. IEEE Trans. Circuits Syst. I 60(6), 1441–1454 (2013). cited By 10

    Article  MathSciNet  Google Scholar 

  9. Lei, C., Pamunuwa, D., Bailey, S., Lambert, C.: Design of robust molecular electronic circuits. In: IEEE International Symposium on Circuits and Systems, 2009. ISCAS 2009, pp. 1819–1822, (2009)

  10. Pulimeno, Azzurra, Graziano, Mariagrazia, Piccinini, Gianluca: Udsm trends comparison: from technology roadmap to ultrasparc niagara2. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(7), 1341–1346 (2012)

    Article  Google Scholar 

  11. Casu, Mario Roberto, Graziano, Mariagrazia, Masera, Guido, Piccinini, Gianluca, Zamboni, Maurizio: An electromigration and thermal model of power wires for a priori high-level reliability prediction. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12, 349–358 (2004)

    Article  Google Scholar 

  12. Rattalino, I., Motto, P., Piccinini, G., Demarchi, D.: A new validation method for modeling nanogap fabrication by electromigration, based on the resistance-voltage (r-v) curve analysis. Phys. Lett. Sect. A 376(30–31), 2134–2140 (2012). cited By 6

    Article  Google Scholar 

  13. Frache, S., Chiabrando, D., Graziano, M., Vacca, M., Boarino, L., Zamboni, M.: Enabling design and simulation of massive parallel nanoarchitectures. J. Parallel Distrib. Comput. 74(6), 2530–2541 (2014). cited By 3

    Article  Google Scholar 

  14. Hoffmann, Roald: An extended Hückel theory. I. Hydrocarbons. J. Chem. Phys. 39, 1397 (1963)

    Article  Google Scholar 

  15. SanchezPortal, Daniel, Ordejon, Pablo, Artacho, Emilio, Soler, Jose M.: Density-functional method for very large systems with LCAO basis sets. Int. J. Quantum Chem. 65(5), 453–461 (1997)

    Article  Google Scholar 

  16. Brandbyge, Mads, Mozos, José-Luis, Ordejón, Pablo, Taylor, Jeremy, Stokbro, Kurt: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65(16), 165401 (2002)

    Article  Google Scholar 

  17. Datta, S.: The non-equilibrium Green’s function (NEGF) formalism: an elementary introduction. In: IEDM’02. International Electron Devices Meeting, 2002, pp. 703–706. IEEE, (2002)

  18. Derosa, P.A., Jorge, M.: Electron transport through single molecules: scattering treatment using density functional and Green function theories. J. Phys. Chem. B 105(2), 471–481 (2001)

    Article  Google Scholar 

  19. Aviram, A., Ratner, M.A.: Molecular rectifiers. Chem. Phys. Lett. 29(2), 277–283 (1974)

    Article  Google Scholar 

  20. Di Ventra, M., Lang, N.D., Pantelides, S.T.: Electronic transport in single molecules. Chem. Phys. 281(2), 189–198 (2002)

    Article  Google Scholar 

  21. Song, H., Reed, M.A., Lee, T.: Single molecule electronic devices. Adv. Mater. 23(14), 1583–1608 (2011)

    Article  Google Scholar 

  22. Chen, X., Braunschweig, A.B., Wiester, M.J., Yeganeh, S., Ratner, M.A., Mirkin, C.A.: Spectroscopic tracking of molecular transport junctions generated by using click chemistry. Angew. Chem. Int. Ed. 48(28), 5178–5181 (2009)

    Article  Google Scholar 

  23. Song, H., Kim, Y., Jeong, H., Reed, M.A., Lee, T.: Coherent tunneling transport in molecular junctions. J. Phys. Chem. C 114, 20431–20435 (2010)

    Article  Google Scholar 

  24. Yamada, R., Kumazawa, H., Noutoshi, T., Tanaka, S., Tada, H.: Electrical conductance of oligothiophene molecular wires. Nano Lett. 8(4), 1237–1240 (2008)

    Article  Google Scholar 

  25. Yamada, R., Kumazawa, H., Tanaka, S., Tada, H.: Electrical resistance of long oligothiophene molecules. Appl. Phys. Express 2(2), 5002 (2009)

    Google Scholar 

  26. Zotti, L.A., Kirchner, T., Cuevas, J.C., Pauly, F., Huhn, T., Scheer, E., Erbe, A.: Revealing the role of anchoring groups in the electrical conduction through single-molecule junctions. Small 6(14), 1529–1535 (2010)

    Article  Google Scholar 

  27. Lee, Jeong-O, Lientschnig, Gnther, Wiertz, Frank, Struijk, Martin, Janssen, Rne A.J., Egberink, Richard, Reinhoudt, David N., Hadley, Peter, Dekker, Cees: Absence of strong gate effects in electrical measurements on phenylene-based conjugated molecules. Nano Lett. 3(2), 113–117 (2003)

    Article  Google Scholar 

  28. Song, H., Kim, Y., Jang, Y.H., Jeong, H., Reed, M.A., Lee, T.: Observation of molecular orbital gating. Nature 462(7276), 1039–1043 (2009)

    Article  Google Scholar 

  29. Datta, S.S., Strachan, D.R., Johnson, A.T.C.: Gate coupling to nanoscale electronics. Phys. Rev. B 79(20), 205404 (2009)

    Article  Google Scholar 

  30. Xiao, K., Liu, Y., Qi, T., Zhang, W., Wang, F., Gao, J., Qiu, W., Ma, Y., Cui, G., Chen, S., Zhan, X., Yu, G., Qin, J., Hu, W., Zhu, D.: A highly -stacked organic semiconductor for field-effect transistors based on linearly condensed pentathienoacene. J. Am. Chem. Soc. 127(38), 13281–13286 (2005)

    Article  Google Scholar 

  31. Zhu, Minliang, Luo, Hao, Wang, Liping, Guo, Yunlong, Zhang, Weifeng, Liu, Yunqi, Yu, Gui: The synthesis of 2,6-dialkylphenyldithieno[3,2-b:2,3-d]thiophene derivatives and their applications in organic field-effect transistors. Dyes Pigments 98(1), 17–24 (2013)

    Article  Google Scholar 

  32. Mahmoud, A., Lugli, P.: First-principles study of a novel molecular rectifier. IEEE Trans. Nanotechnol. 12(5), 719–724 (2013)

    Article  Google Scholar 

  33. Feng, G., Wijesekera, N., Beck, T.L.: Real-space multigrid method for linear-response quantum transport in molecular electronic devices. IEEE Trans. Nanotechnol. 6(2), 238–244 (2007)

    Article  Google Scholar 

  34. Bai, P., Li, E., Collier, P., et al.: Theoretical investigation of metal-molecule interface with terminal groups. IEEE Trans. Nanotechnol. 4(4), 422–429 (2005)

    Article  Google Scholar 

  35. Fransson, J., Bengone, O.M., Larsson, J.A., Greer, J.C.: A physical compact model for electron transport across single molecules. IEEE Trans. Nanotechnol. 5(6), 745–749 (2006)

    Article  Google Scholar 

  36. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  37. Zahid, F., Paulsson, M., Datta, S.: Electrical conduction through molecules. Adv. Semicond. Org. Nano Tech. (2003)

  38. Datta, S.: Electronic transport in mesoscopic systems. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  39. Hou, D., Wei, J.H.: The difficulty of gate control in molecular transistors. In: ArXiv e-prints, (2011)

  40. Kaun, C.C., Seideman, T.: The gating efficiency of single-molecule transistors. J. Comput. Theor. Nanosci. 3(6), 951–956 (2006)

    Article  Google Scholar 

  41. Mahmoud, A., Lugli, P.: Transport characterization of a gated molecular device with negative differential resistance. In: 12th IEEE Conference on Nanotechnology (IEEE-NANO), 2012, pp. 1–5. IEEE, (2012)

  42. Xu, Y., Fang, C., Cui, B., Ji, G., Zhai, Y., Liu, D.: Gated electronic currents modulation and designs of logic gates with single molecular field effect transistors. Appl. Phys. Lett. 99(4), 043304–043304 (2011)

    Article  Google Scholar 

  43. Maiti, S.K.: Multi-terminal quantum transport through a single benzene molecule: evidence of a molecular transistor. Solid State Commun. 150(29), 1269–1274 (2010)

    Article  Google Scholar 

  44. Mahmoud, A., Lugli, P.: Towards circuit modeling of molecular devices. IEEE Trans. Nanotechnol. 13(3), 510–516 (2014)

    Article  Google Scholar 

  45. Atomistix ToolKit version 12.8 quantumwise a/s

  46. Brandbyge, M., Mozos, J.-L., Ordejón, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B 65, 165401 (2002)

    Article  Google Scholar 

  47. Sørensen, H.H.B., Hansen, P.C., Petersen, D.E., Skelboe, S., Stokbro, K.: Krylov subspace method for evaluating the self-energy matrices in electron transport calculations. Phys. Rev. B 77, 155301 (2008)

    Article  Google Scholar 

  48. Soler, J.M., Artacho, E., Gale, J.D., García, A., Junquera, J., Ordejón, P., Sánchez-Portal, D.: The siesta method for ab initio order-n materials simulation. J. Phys. 14(11), 2745 (2002)

    Google Scholar 

  49. Ai, Y., Zhang, H.-L.: Construction and conductance measurement of single molecule junctions. Acta Phys. Chim. Sin. 28(10), 2237–2248 (2012)

  50. VHDL analog and mixed-signal extensions, 1999, IEEE Std. 1076.1

  51. Zahir, A., Zaidi, S.A.A., Pulimeno, A., Graziano, M., Demarchi, D., Masera, G., Piccinini, G.: Molecular transistor circuits: From device model to circuit simulation. In: 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 129–134, (2014)

  52. Zahir, A., Mahmoud, A., Pulimeno, A., Graziano, M., Piccinini, G., Lugli, P.: Hierarchical modeling of opv-based crossbar architectures. In 2014 14th IEEE Conference on Nanotechnology (IEEE-NANO), pp. 1–5. IEEE, (2014)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Graziano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahir, A., Pulimeno, A., Demarchi, D. et al. EE-BESD: molecular FET modeling for efficient and effective nanocomputing design. J Comput Electron 15, 479–491 (2016). https://doi.org/10.1007/s10825-015-0777-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0777-y

Keywords

Navigation