Skip to main content
Log in

Analog performance investigation of dual electrode based doping-less tunnel FET

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

In this paper, we have proposed a device and named it dual electrode doping-less TFET (DEDLTFET), in which electrodes on top and bottom of source and drain are considered to enhance the ON state current and Analog performances. The charge plasma technique is used to generate electron’s and hole’s clouding depending upon their respective work functions at top and bottom of source/drain electrode. Band-to-band-tunneling rate is similar on both sides of source-channel junctions, which increases ON state current. The analog performance parameters of DEDLTFET are investigated and using device simulation the demonstrated characteristics are compared with doping-less (DLTFET) and the conventional doped double gate TFET (DGTFET), such as transconductance \((\hbox {g}_\mathrm{m})\), transconductance to drain current ratio \((\hbox {g}_\mathrm{m}/\hbox {I}_\mathrm{D})\), output-conductance (g\(_{d})\), output resistance \((\hbox {r}_\mathrm{d})\), early voltage \((\hbox {V}_\mathrm{EA})\), intrinsic gain \((\hbox {A}_\mathrm{V})\), total gate capacitance \((\hbox {C}_\mathrm{gg})\) and unity gain frequency \((\hbox {f}_\mathrm{T})\). From the simulation results, it is observed that DEDLTFET has significantly improved analog performance as compared to DGTFET and DLTFET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Koswatta, S.O., Lundstrom, M.S., Nikonov, D.E.: Performance comparison between p-i-n tunneling transistors and conventional MOSFETs. IEEE Trans. Electron. Devices 56(3), 456–465 (2009)

    Article  Google Scholar 

  2. Colinge, J.P., Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Razavi, P., O’Neill, B., Blake, A., White, M., Kelleher, A.M., McCarthy, B., Murphy, R.: Nanowire transistors without junctions. Nat. Nanotechnol. 5(3), 225–229 (2010)

    Article  Google Scholar 

  3. Bhuwalka, K.K., Schulze, J., Eisele, I.: Scaling the vertical tunnel FET with tunnel bandgap modulation and gate work function engineering. IEEE Trans. Electron. Devices 52(5), 909–917 (2005)

    Article  Google Scholar 

  4. Nirschl, T., Henzler, S., Fischer, J., Fulde, M., Bargagli-Stoffi, A., Sterkel, M., Sedlmeir, J., Weber, C., Heinrich, R., Schaper, U., Einfeld, J., Neubert, R., Feldmann, U., Stahrenberg, K., Ruderer, E., Georgakos, G., Huber, A., Kakoschke, R., Hansch, W., Schmitt-Landsiedel, D.: Scaling properties of the tunneling field effect transistor (TFET): device and circuit. Solid-State Electron. 50(1), 44–51 (2006)

    Article  Google Scholar 

  5. Choi, W.Y., Park, B.G., Lee, J.D.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron. Device Lett. 28(8), 743–745 (2007)

    Article  Google Scholar 

  6. Boucart, K., Ionescu, A.M.: Length scaling of the double gate tunnel FET with a high-k gate dielectric. Solid-State Electron. 21(11–12), 1500–1507 (2007)

    Article  Google Scholar 

  7. Jagadesh Kumar, M., Janardhanan, Sindhu: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron. Devices 60(10), 3285–3290 (2013)

  8. Rahi, S.B., Ghosh, B., Asthana, P.: A simulation-based proposed high-k heterostructure AlGaAs/Si junctionless n-type tunnel FET. J. Semicond. 35(11), 114005–114015 (2014)

  9. Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron. Device Lett. 34(5), 584–586 (2013)

  10. Jhaveri, R., Nagavarapu, V., Woo, J.C.S.: Effect of pocket doping and annealing schemes on the source-pocket tunnel field-effect transistor. IEEE Trans. Electron. Devices 58(1), 80–86 (2011)

  11. Patel, Nayan, Ramesha, A., Mahapatra, Santanu: Drive current boosting of n-type tunnel FET with strained SiGe layer at source. Microelectron. J. 39, 1671–1677 (2008)

    Article  Google Scholar 

  12. Damrongplasit, N., Shin, C., Kim, S.H., Liu, T.J.K.: Study of random dopant fluctuation effects in germanium-source tunnel FETs. IEEE Trans. Electron. Devices 58(10), 3541–3548 (2011)

    Article  Google Scholar 

  13. Leung, G., Chui, C.O.: Stochastic variability in silicon doublegate lateral tunnel field-effect transistors. IEEE Trans. Electron. Devices 60(1), 84–91 (2013)

    Article  Google Scholar 

  14. Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The charge plasma P-N diode. IEEE Electron. Device Lett. 29(12), 1367–1369 (2008)

    Article  Google Scholar 

  15. Boucart, K., Ionescu, A.M.: Double gate tunnel FET with high-k gate dielectric. IEEE Trans. Electron. Devices 54(7), 1725–1733 (2007)

    Article  Google Scholar 

  16. Omura, Y., Horiguchi, S., Tabe, M., Kishi, K.: Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFETs. IEEE Trans. Electron. Devices 14(12), 569–571 (1993)

    Article  Google Scholar 

  17. Rajasekharan, B., Hueting, R.J.E., Salm, C., van Hemert, T., Wolters, R.A.M., Schmitz, J.: Fabrication and characterization of the charge-plasma diode. IEEE Electron. Device Lett. 31(6), 528–530 (2010)

    Article  Google Scholar 

  18. ATLAS User Manual: Device Simulation Software: Silvaco Int. Santa Clara (2012)

  19. Luisier, M., Klimeck, G.: Simulation of nanowire tunneling transistors: from the Wentzel-Kramers-Brillouin approximation to full-band phonon-assisted tunneling. J. Appl. Phys. 107, 084507 (2010)

    Article  Google Scholar 

  20. Sze, S.M.: Physics of Semiconductor Devices, 3rd edn. Wiley, New York (2008)

    Google Scholar 

  21. Ilatikhameneh, H., Klimeck, G., Appenzeller, J., Rahman, R.: Scaling theory of electrically doped 2D transistors. IEEE Electron. Device Lett. 36(7), 726–728 (2015)

    Article  Google Scholar 

  22. Ilatikhameneh, H., Ameen, T.A., Klimeck, G., Appenzeller, J., Rahman, R.: Dielectric engineered tunnel field-effect transistor. IEEE Electron. Device Lett. doi:10.1109/LED.2015.2474147

  23. Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Effect of Temperature and Gate Stack on the Linearity and Analog Performance of Double Gate Tunnel FET. Springer, Berlin Heidelberg (2011)

    Book  Google Scholar 

  24. Kilchytska, V., Neve, A., Vancaillie, L., Levacq, D., Adriaensen, S., van Meer, H., de Meyer, K., Raynaud, C., Dehan, M., Raskin, J.P., Flandre, D.: Influence of device engineering on the analog and RF performances of SOI MOSFETs. IEEE Trans. Electron. Devices 50(3), 577–588 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunny Anand.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, S., Amin, S.I. & Sarin, R.K. Analog performance investigation of dual electrode based doping-less tunnel FET. J Comput Electron 15, 94–103 (2016). https://doi.org/10.1007/s10825-015-0771-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0771-4

Keywords

Navigation