Skip to main content
Log in

Design of a wideband gap-coupled modified square fractal antenna

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

A new design of a gap coupled modified square fractal antenna has been presented in this paper as an alternative solution to improve the bandwidth of the conventional microstrip patch antenna. The proposed antenna provides an impedance bandwidth of 83.13 % around the resonant frequency of 1.844 GHz. This antenna has been designed for use in Bluetooth, WLAN and WiMAX applications simultaneously. IE3D Zeland simulation software has been applied for the simulation of the proposed design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Constantine, G., Balanis, A.: Antenna Theory, Analysis and Design. Wiley, Hoboken (2005)

    Google Scholar 

  2. Chair, R., Lee, K.F., Luk, K.M.: Bandwidth and cross polarization characteristics of quarter wave shorted patch antenna. Microwave Opt. Technol. Lett. 22(2), 101–103 (1999)

    Article  Google Scholar 

  3. Waterhouse, R.B.: Broadband stacked shorted patch. Electron. Lett. 35(2), 98–100 (1999)

    Article  Google Scholar 

  4. Chen, H.-Y., Tao, Y.: Performance improvement of a U-slot patch antenna using a dual-band frequency selective surface with modified Jerusalem cross elements. IEEE Trans. Antennas Propag. 59(9), 3482–3486 (2011)

    Article  Google Scholar 

  5. Chen, H.-Y., Tao, Y.: Antenna gain and bandwidth enhancement using frequency selective surface with double rectangular ring elements. In: IEEE Transactions on Antenna Propagation and EM Theory, 271–274 December 2010

  6. Tyagi, S., Vyas, K.: Bandwidth enhancement using slotted U-shape microstrip antenna with PBG ground. Int. J. Adv. Technol. Eng. Res. 3(1), 23–27 (2013)

    Google Scholar 

  7. Khanna, A., Srivastava, D.K.: Serrated edged microstrip patch antenna using N-shaped slot for WLAN/ WiMAX/ Bluetooth applications. Int. J. Res. Sci. Eng. 3(7), 330–336 (2014)

    Google Scholar 

  8. Gupta, H.K., Singhal, P.K., Sharma, P.K., Jadon, V.K.: Slotted circular microstrip patch antenna designs for multiband application in wireless communication. Int. J. Eng. Technol. 1(3), 158–167 (2012)

    Article  Google Scholar 

  9. Kajla, A.K., Khan, S., Kushwaha, R.: Microstrip patch antenna using crown and sierpinski fractal slot. Int. J. Adv. Res. Sci. Eng. 2(10), 66–75 (2013)

    Google Scholar 

  10. Sharma, R.: Design of trapezoidal patch antenna. Int. J. Eng. Res. Appl. 3(5), 1744–1747 (2013)

    Google Scholar 

  11. Garima, D.B., Saini, J.S., Saxena, V.K., Joshi, L.M.: Design of broadband circular patch microstrip antenna with diamond shape slot. Int. J. Radio Space Phys. 40, 275–281 (2011)

    Google Scholar 

  12. Sung, Y.J.: Bandwidth enhancement of a wide slot using fractal-shaped Sierpinski. IEEE Trans. Antennas Propag. 59(8), 3076–3079 (2011)

    Article  Google Scholar 

  13. Li, D., Zhang, F.S., Zhao, Z.N., Ma, L.T., Li, X.N.: A fractal CPW-fed wideband koch snowflake monopole for WLAN/WiMAX applications. Prog. Electromagn. Res. C 28, 143–153 (2012)

    Article  Google Scholar 

  14. Lee, K.F., Luk, K.M., Tong, K.F., Shum, S.M., Huynk, T., Lee, R.Q.: Experimental and simulation studies of the coaxially fed U-slot rectangular patch. IEEE Proc. Microw. Antenna Propag. 144(5), 354–358 (1997)

    Article  Google Scholar 

  15. Mulgi, S.N., Konda, R.B., Pushpanjali, G.M., Satnoor, S.K., Hunagund, P.V.: Design and development of wideband gap-coupled slot rectangular microstrip array antenna. Int. J. Radio Space Phys. 37, 291–295 (2008)

    Google Scholar 

  16. Bhomia, Y., Prasad, S.V.A.V., Kumar, P.: Sierpinski and crown square fractal shapes slotted microstrip patch antenna. Int. J. Electron. Comput. Sci. Eng. 3(1), 26–30 (2014)

    Google Scholar 

  17. Bhomia, Y., Chaturvedi, A., Sharma, Y.K.: Microstrip patch antenna combining crown and sierpinski fractal shapes. In: Proceedings of the International Conference on Advances in Computing, Communications and Informatics, pp. 1210-1213

  18. Chen, W.-L., Wang, G.-M., Zhang, C.-X.: Small size microstrip patch antenna combining Koch and Sierpinski fractal-shapes. IEEE Antennas Wirel. Propag. Lett. 7, 738–741 (2008)

    Article  Google Scholar 

  19. Kumar, G., Gupta, K.C.: Broadband microstrip antennas using additional resonators gap coupled to the radiating edges. IEEE Trans. Antennas Propag. 32(12), 1375–1379 (1984)

    Article  Google Scholar 

  20. Aanandan, C.K., Mohanan, P., Nair, K.G.: Broad-band gap coupled microstrip antenna. IEEE Trans. Antennas Propag. 38(10), 1581–1586 (1990)

    Article  Google Scholar 

  21. Nile, M.B., Rasheed, A.A., Kumar, G.: Broadband gap coupled semicircular and triangular microstrip antennas. In: Proceedings of IEEE Antennas and Propagation Society International Symposium Digest, pp. 1202–1205 (1994)

  22. IE3D user’s manual, release 9, Zeland Software Inc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Kumar Srivastava.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, D.K., Khanna, A. & Saini, J.P. Design of a wideband gap-coupled modified square fractal antenna. J Comput Electron 15, 239–247 (2016). https://doi.org/10.1007/s10825-015-0740-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0740-y

Keywords

Navigation