Skip to main content
Log in

The quantum transport of pyrene and its silicon-doped variant: a DFT-NEGF approach

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The quantum conductance properties of pyrene molecule and its silicone-doped variant between semi- infinite aluminum nano-chains were investigated using the density functional theory combined with the nonequilibrium Green function method. Electronic transport computations were carried out in the bias voltage ranging from 0.0 to +2.0 V divided by 0.1 V step-sized intervals and under the gate potentials including \(-\)3.0, 0.0 and +3.0 V. The current-bias curves at the considered bias and gates potential showed regions with negative differential resistance (NDR). The effects of the variations of the gates on the NDR characteristics, including the number of NDR peaks, bias range and current maxima’s at the peak, have been discussed and the potential applicability of the devices as nano-switches and multi-nano-switches have been highlighted. The transmission spectrum along with the density of states (DOS) and projected DOS (PDOS) has also been presented and transmission variations have been addressed in terms of the DOS and PDOS variations. Quantum conductance at zero bias versus the gate potential has also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nitzan, A.: Electron transmission through molecules and molecular interfaces. Ann. Rev. Phys. Chem. 52, 681 (2001)

    Article  Google Scholar 

  2. Heath, J.R., Ratner, M.A.: Molecular electronics. Phys. Today 56, 43–49 (2003)

    Article  Google Scholar 

  3. Joachim, C., Ratner, M.A.: Molecular electronics: some views on transport junctions and beyond. Proc. Natl. Acad. Sci. USA 102, 8801–8808 (2005)

    Article  Google Scholar 

  4. Tour, J.M.: Molecular Electronics: Commercial Insights, Chemistry, Devices, Architecture and Programming. World Scientific, New Jersey (2003)

    Book  Google Scholar 

  5. Joachim, C., Gimzewski, J.K., Aviram, A.: Electronics using hybrid-molecular and mono-molecular devices. Nature 408, 541–548 (2000)

    Article  Google Scholar 

  6. Darancet, P., Widawsky, J., Choi, H., Venkataraman, L., Neaton, J.: Quantitative current–voltage characteristics in molecular junctions from first principles. Nano Lett. 12, 6250–6254 (2012)

    Article  Google Scholar 

  7. Paulsson, M., Zahid, F., Datta, S.: Resistance of a molecule. In: Brenner, D., Lyshevski, S., Iafrate, G. (eds.) Engineering and Technology Handbook, p. 1080. CRC Press, Boca Raton (2007)

    Google Scholar 

  8. Haug, H., Jauho, A.P.: Quantum Kinetics in Transport and Optics of Semiconductors. Springer, Berlin (2007)

    Google Scholar 

  9. Caroli, C., Combescot, R., Nozieres, P., Saint-James, D.: Direct calculation of the tunneling current. J. Phys. C: Solid State Phys. 4, 916–929 (1971)

    Article  Google Scholar 

  10. Schwinger, J.: Brownian motion of a quantum oscillator. J. Math. Phys. 2, 407–432 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  11. Keldysh, L.V.: Diagram Technique for Nonequilibrium Processes. J. Phys. JETP 20, 1018 (1965)

    MathSciNet  Google Scholar 

  12. Reddy, D., Register, L.F., Carpenter, G.D., Banerjee, S.K.: Graphene field-effect transistors. J. Phys. D: Appl. Phys. 44, 313001 (2011)

    Article  Google Scholar 

  13. Wang, H., Chan, G.K.L.: Self-interaction and molecular Coulomb blockade transport in ab initio Hartree–Fock theory. Phys. Rev. B 76, 193310 (2007)

    Article  Google Scholar 

  14. Rocha, A.R., Garcia-Suarez, V.M., Bailey, S., Lambert, C., Ferrer, J., Sanvito, S.: Spin and molecular electronics in atomically generated orbital landscapes. Phys. Rev. B 73, 085414 (2006)

    Article  Google Scholar 

  15. Bilic, A., Sanvito, S.: Tailoring highly conductive graphene nanoribbons from small polycyclic aromatic hydrocarbons: a computational study. J. Phys.: Condens. Matter 25, 275301 (2013)

    Google Scholar 

  16. Wu, J., Pisula, W., Mullen, K.: Graphene molecules as potential material for electronics. Chem. Rev. 107, 718–747 (2007)

    Article  Google Scholar 

  17. Bilic, A., Gale, J.D., Sanvito, S.: From fused aromatics to graphene-like nanoribbons: the effects of multiple terminal groups, length and symmetric pathways on charge transport. Phys. Rev. B 84, 205436 (2011)

    Article  Google Scholar 

  18. Wang, X., Sun, G., Routh, P., Kim, D.H., Chen, P.: Heteroatom-doped graphene materials: syntheses, properties and applications. Chem. Soc. Rev. 43, 7067–7098 (2014)

    Article  Google Scholar 

  19. Hasmy, A., Perez-Jimenez, A.J., Palacios, J.J., Garcia-Mochales, P., Costa-Kramer, J.L., Diaz, M., Medina, E., Serena, P.A.: Ballistic resistivity in aluminum nanocontacts. Phys. Rev. B 72, 245405 (2005)

    Article  Google Scholar 

  20. Scheer, E., Agrait, N., Cuevas, J.C., Yeyati, A.L., Ludoph, B., Martin-Rodero, A., Rubio, G., Bollinger, R., Ruitenbeek, JMv, Urbina, C.: The signature of chemical valence in the electrical conduction through a single-atom contact. Nature 394, 154–157 (1998)

    Article  Google Scholar 

  21. Schee, E., Joyez, P., Esteve, D., Urbina, C., Devoret, M.H.: Conduction channel transmissions of atomic-size aluminum contacts. Phys. Rev. Lett. 78, 3535–3538 (1997)

    Article  Google Scholar 

  22. Simbeck, A.J., Lanzillo, N., Kharche, N., Verstraete, M.J., Nayak, S.K.: Aluminum conducts better than copper at the atomic scale: a first-principles study of metallic atomic wires. ACS Nano 6, 10449–10455 (2012)

    Google Scholar 

  23. Mahmoud, A., Lugli, P.: Study on molecular devices with negative differential resistance. Appl. Phys. Lett 103, 033506 (2013)

    Article  Google Scholar 

  24. Chen, S.L., Griffin, P.B., Plummer, J.D.: Negative differential resistance circuit design and memory applications. IEEE Trans. Electron Devices 56, 634–640 (2009)

    Article  Google Scholar 

  25. Saha, K.K., Nikolic, B.K.: Negative differential resistance in graphene-nanoribbon carbon-nanotube crossbars: a first-principles multiterminal quantum transport study. J. Comput. Electron. 12, 542–552 (2013)

    Article  Google Scholar 

  26. Kondo, H., Kino, H., Nara, J., Ozaki, T., Ohno, T.: Contact-structure dependence of transport properties of a single organic molecule between Au electrodes. Phys. Rev. B 73, 235323 (2006)

    Article  Google Scholar 

  27. Ozaki, T., Nishio, K., Kino, H.: Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Phys. Rev. B 81, 035116 (2010)

    Article  Google Scholar 

  28. Chen, G., Mukamel, S.: Reduced electronic density matrices, effective Hamiltonians, and nonlinear susceptibilities of conjugated polyenes. J. Chem. Phys. 103, 9355–9362 (1995)

    Article  Google Scholar 

  29. Landauer, R.: Spatial variation of currents and fields. IBM J. Res. Dev. 1, 233 (1957)

    Article  MathSciNet  Google Scholar 

  30. Buttiker, M.: Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986)

    Article  Google Scholar 

  31. Taylor, J., Guo, H., Wang, J.: Ab initio modeling of quantum transport properties of molecular electronic devices. Phys. Rev. B. 63, 245407 (2001)

    Article  Google Scholar 

  32. Brandbyge, M., Mozos, J.L., Ordejon, P., Taylor, J., Stokbro, K.: Density-functional method for nonequilibrium electron transport. Phys. Rev. B. 65, 165401 (2002)

    Article  Google Scholar 

  33. URL http://www.openmx-square.org. The code, OPENMX, pseudoatomic basis functions, and pseudo-potentials are available on a web site: http://www.openmx-square.org

  34. Martin, R.M.: Electronic Structure: Basic Theory and Practical Methods. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  35. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)

    Article  Google Scholar 

  36. Wu, Y., Farmer, D.B., Zhu, W., Han, S.J., Dimitrakopoulos, C.D., Bol, A.A., Avouris, P., Lin, Y.M.: Three-terminal graphene negative differential resistance devices. ACS Nano 6(3), 2610–2616 (2012)

  37. Fano, U.: Effects of configuration interaction on intensities and phase shifts. Phys. Rev. 124, 1866–1878 (1961)

    Article  MATH  Google Scholar 

  38. Briet, G., Wigner, E.: Capture of slow neutrons. Phys. Rev. 49, 519–531 (1936)

    Article  Google Scholar 

  39. Sowa-Rykowska, A., Adamowski, J.: Fano resonances in current–voltage characteristics of nanowires with embedded quantum dots. Phys. Rev. B 82, 195311 (2010)

    Article  Google Scholar 

  40. Ke, S.H., Baranger, H.U., Yang, W.: Electron transport through molecules: self-consistent and non-self-consistent approaches. Phys. Rev. B 70, 085410 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by a research fund “(No. 217/D/5666)” from Azarbiajan Shahid Madani University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rastkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rastkar, A., Ghavami, B., Jahanbin, J. et al. The quantum transport of pyrene and its silicon-doped variant: a DFT-NEGF approach. J Comput Electron 14, 619–626 (2015). https://doi.org/10.1007/s10825-015-0692-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0692-2

Keywords

Navigation