Skip to main content
Log in

Study of thermal properties of graphene-based structures using the force constant method

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The thermal properties of graphene-based materials are theoretically investigated. The fourth-nearest neighbor force constant method for phonon properties is used in conjunction with both the Landauer ballistic and the non-equilibrium Green’s function techniques for transport. Ballistic phonon transport is investigated for different structures including graphene, graphene antidot lattices, and graphene nanoribbons. We demonstrate that this particular methodology is suitable for robust and efficient investigation of phonon transport in graphene-based devices. This methodology is especially useful for investigations of thermoelectric and heat transport applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Novoselov, K., Geim, A., Morozov, S., Jiang, D., Zhang, Y., Dubonos, S., Grigorieva, I.: Science 306, 666 (2004)

    Article  Google Scholar 

  2. Liang, G., Neophytou, N., Lundstrom, M., Nikonov, D.: J. Appl. Phys. 102(5), 054307 (2007)

    Article  Google Scholar 

  3. Fiori, G., Iannaccone, G.: IEEE Electron Device Lett. 28(8), 760 (2007)

    Article  Google Scholar 

  4. Basu, D., Gilbert, M., Register, L., Banerjee, S., MacDonald, A.: Appl. Phys. Lett. 92, 042114 (2008)

    Article  Google Scholar 

  5. Leong, Z., Lam, K.T., Liang, G.: In: 13th International Workshop on Computational Electronics, pp. 1–4 (2009)

    Google Scholar 

  6. Falkovsky, L.: J. Phys. Conf. Ser. 129, 012004 (2008)

    Article  Google Scholar 

  7. Liu, M., Yin, X., Ulin-Avila, E., Geng, B., Zentgraf, T., Ju, L., Wang, F., Zhang, X.: Nature 474, 67 (2011)

    Google Scholar 

  8. Yuan, S., Roldan, R., Raedt, H., Katsnelson, M.: Phys. Rev. B 84(19), 195418 (2011)

    Article  Google Scholar 

  9. Balandin, A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.: Nano Lett. 8(3), 902 (2008)

    Article  Google Scholar 

  10. Ghosh, S., Calizo, I., Teweldebrahn, D., Pokatilov, E., Nika, D., Balandin, A., Bao, W., Miao, F., Lau, C.: Appl. Phys. Lett. 92, 151911 (2008)

    Article  Google Scholar 

  11. Hu, J., Schiffli, S., Vallabhaneni, A., Ruan, X., Che, Y.: Appl. Phys. Lett. 97, 133107 (2010)

    Article  Google Scholar 

  12. Ong, Z., Pop, E.: Phys. Rev. B 84(7), 075471 (2011)

    Article  Google Scholar 

  13. Chen, J.H., Jang, C., Xiao, S., Ishighami, M., Fuhrer, M.: Nat. Nanotechnol. 3(4), 206 (2008)

    Article  Google Scholar 

  14. Kim, K., Zhao, Y., Jang, H., Lee, S., Kim, J., Kim, K., Ahn, J.H., Kim, P., Choi, J.Y., Hong, B.: Nature 457, 706 (2009)

    Article  Google Scholar 

  15. Hone, J., Whitney, M., Piskoti, C., Zettl, A.: Phys. Rev. B 59, R2514 (1999)

    Article  Google Scholar 

  16. Sevincli, H., Cuniberti, G.: Phys. Rev. B 81, 113401 (2010)

    Article  Google Scholar 

  17. Aksamija, Z., Knezevic, I.: Appl. Phys. Lett. 98(14), 141919 (2011)

    Article  Google Scholar 

  18. Hu, J., Ruan, X., Chen, Y.: Nano Lett. 9(7), 2730 (2009)

    Article  Google Scholar 

  19. Karamitaheri, H., Pourfath, M., Faez, R., Kosina, H.: J. Appl. Phys. 110(5), 054506 (2011)

    Article  Google Scholar 

  20. Xie, Z.X., Chen, K.Q., Duan, W.: J. Phys., Condens. Matter 23, 315302 (2011)

    Article  Google Scholar 

  21. Zhang, H., Lee, G., Cho, K.: Phys. Rev. B 84(11), 115460 (2011)

    Article  Google Scholar 

  22. Haskins, J., Kinaci, A., Sevik, C., Sevincli, H., Cuniberti, G., Cagin, T.: ACS Nano 5(5), 3779 (2011)

    Article  Google Scholar 

  23. Jiang, J.W., Wang, B.S., Wang, J.S.: Appl. Phys. Lett. 98(11), 113114 (2011)

    Article  MathSciNet  Google Scholar 

  24. Hao, F., Fang, D., Xu, Z.: Appl. Phys. Lett. 99(4), 041901 (2011)

    Article  Google Scholar 

  25. Ouyang, Y., Guo, J.: Appl. Phys. Lett. 94, 263107 (2009)

    Article  Google Scholar 

  26. Paul, A., Luisier, M., Klimeck, G.: J. Comput. Electron. 9, 160 (2010)

    Article  Google Scholar 

  27. Rego, L., Kirczenow, G.: Phys. Rev. Lett. 81, 232 (1998)

    Article  Google Scholar 

  28. Datta, S.: Quantum Transport: Atom to Transistor. Cambridge University Press, Cambridge (2005)

    MATH  Google Scholar 

  29. Wang, J.S., Wang, J., Lu, J.: Eur. Phys. J. B 62(4), 381 (2008)

    Article  Google Scholar 

  30. Hochbaum, A., Chen, R., Delgado, R., Liang, W., Garnett, E., Najarian, M., Majumdar, A., Yang, P.: Nature 451(7175), 163 (2008)

    Article  Google Scholar 

  31. Boukai, A., Bunimovich, Y., Tahir-Kheli, J., Yu, J.K., Goddard, W., Heath, J.: Nature 451(7175), 168 (2008)

    Article  Google Scholar 

  32. Venkatasubramanian, R., Siivola, E., Colpitts, T., O’Quinn, B.: Nature 413(6856), 597 (2001)

    Article  Google Scholar 

  33. Nolas, G., Sharp, J., Goldsmid, H.: Thermoelectrics: Basic Principles and New Materials Developments. Springer, Berlin (2001)

    MATH  Google Scholar 

  34. Seol, J., Jo, I., Moore, A., Lindsay, L., Aitken, Z., Pettes, M., Li, X., Yao, Z., Huang, R., Broido, D., Mingo, N., Ruoff, R., Shi, L.: Science 328(5975), 213 (2010)

    Article  Google Scholar 

  35. Han, M., Ozyilmaz, B., Zhang, Y., Kim, P.: Phys. Rev. Lett. 98, 206805 (2007)

    Article  Google Scholar 

  36. Pedersen, T., Flindt, C., Pedersen, J., Mortensen, N., Jauho, A.P., Pedersen, K.: Phys. Rev. Lett. 100(13), 136804 (2008)

    Article  Google Scholar 

  37. Karamitaheri, H., Pourfath, M., Faez, R., Kosina, H.: In: Dielectrics in Nanosystems -and- Graphene, Ge/III-V, Nanowires and Emerging Materials for Post-CMOS Applications 3. vol. 35, pp. 185–192. The Electrochemical Society, Montreal (2011)

    Google Scholar 

  38. Ye, L.H., Liu, B.G., Wang, D.S., Han, R.: Phys. Rev. B 69(23), 235409 (2004)

    Article  Google Scholar 

  39. Lobo, C., Martins, J.: Z. Phys. D 39, 159 (1997)

    Article  Google Scholar 

  40. Kusminskiy, S., Campbell, D., Neto, A.C.: Phys. Rev. B 80, 035401 (2009)

    Article  Google Scholar 

  41. Wirtz, L., Rubio, A.: Solid State Commun. 131(3–4), 141 (2004)

    Article  Google Scholar 

  42. Wang, H., Wang, Y., Cao, X., Feng, M., Lan, G.: J. Raman Spectrosc. 40, 1791 (2009)

    Article  Google Scholar 

  43. Saito, R., Dresselhaus, M., Dresselhaus, G.: Rysical Properties of Carbon Nanotubes. Imperial College Press, London (1998)

    Book  Google Scholar 

  44. Kim, R., Datta, S., Lundstrom, M.S.: J. Appl. Phys. 105, 034506 (2009)

    Article  Google Scholar 

  45. Ouyang, Y., Guo, J.: Appl. Phys. Lett. 94, 263107 (2009)

    Article  Google Scholar 

  46. Mohr, M., Maultzsch, J., Dobardzic, E., Reich, S., Milosevic, I., Damnjanovic, M., Bosak, A., Krisch, M., Thomsen, C.: Phys. Rev. B 76(3), 035439 (2007)

    Article  Google Scholar 

  47. Huang, Z., Fisher, T., Murthy, J.: J. Appl. Phys. 108(9), 094319 (2010)

    Article  Google Scholar 

  48. Xu, Y., Chen, X., Gu, B.L., Duan, W.: Appl. Phys. Lett. 95(23), 233116 (2009)

    Article  Google Scholar 

  49. Guo, Z., Zhang, D., Gong, X.G.: Appl. Phys. Lett. 95, 163103 (2009)

    Article  Google Scholar 

  50. Tan, Z., Wang, J.S., Gan, C.: Nano Lett. 11(1), 214 (2011)

    Article  MathSciNet  Google Scholar 

  51. Savin, A., Kivshar, Y., Hu, B.: Phys. Rev. B 82, 195422 (2010)

    Article  Google Scholar 

  52. Jiang, J.W., Lan, J., Wang, J.S., Li, B.: J. Appl. Phys. 107(5), 054314 (2010)

    Article  Google Scholar 

  53. Zhang, W., Fisher, T., Mingo, N.: Numer. Heat Transf. Appl. 51(4), 333 (2007)

    Article  Google Scholar 

  54. Sancho, M., Sancho, J., Sancho, J., Rubio, J.: J. Phys. F, Met. Phys. 15, 851 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Karamitaheri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karamitaheri, H., Neophytou, N., Pourfath, M. et al. Study of thermal properties of graphene-based structures using the force constant method. J Comput Electron 11, 14–21 (2012). https://doi.org/10.1007/s10825-011-0380-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-011-0380-9

Keywords

Navigation