Skip to main content
Log in

Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors

  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Abstract

In this study, we have “blindly” assessed the ability of several combinations of docking software and scoring functions to predict the binding of a fragment-like library of bovine trypsine inhibitors. The most suitable protocols (involving Gold software and GoldScore scoring function, with or without rescoring) were selected for this purpose using a training set of compounds with known biological activities. The selected virtual screening protocols provided good results with the SAMPL3-VS dataset, showing enrichment factors of about 10 for Top 20 compounds. This methodology should be useful in difficult cases of docking, with a special emphasis on the fragment-based virtual screening campaigns.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

RMSD:

Root mean square deviation

ROC:

Receiver operating characteristic

AUC:

Area under curve

CI:

Confidence interval

QPLD:

QM-Polarized ligand docking

References

  1. Huang D, Caflisch A (2011) Fragment-based approaches in virtual screening. In: Sotriffer C (ed) Virtual screening. Wiley-VCH Verlag, Weinheim, pp 467–489

    Chapter  Google Scholar 

  2. Kawatkar S, Wang H, Czerminski R, Joseph-McCarthy D (2009) Virtual fragment screening: an exploration of various docking and scoring protocols for fragments using glide. J Comput Aided Mol Des 23:527–539

    Article  CAS  Google Scholar 

  3. Sandor M, Kiss R, Keseru GM (2010) Virtual fragment docking by Glide: a validation study on 190 protein-fragment complexes. J Chem Inf Model 50:1165–1172

    Article  CAS  Google Scholar 

  4. Joseph-McCarthy D (2009) Challenges of fragment screening. J Comput Aided Mol Des 23:449–451

    Article  CAS  Google Scholar 

  5. Law R, Barker O, Barker J, Hesterkamp T, Godemann R, Andersen O, Fryatt T, Courtney S, Hallett D, Whittaker M (2009) The multiple roles of computational chemistry in fragment-based drug design. J Comput Aided Mol Des 23:459–473

    Article  CAS  Google Scholar 

  6. Warr W (2011) Fragment-based drug discovery: what really works. J Comput Aided Mol Des 25:599–605

    Article  CAS  Google Scholar 

  7. Rabal O, Urbano-Cuadrado M, Oyarzabal J (2010) Computational medicinal chemistry in fragment-based drug discovery: what, how and when. Future Med Chem 3:95–134

    Article  Google Scholar 

  8. Huang N, Jacobson MP (2010) Binding-site assessment by virtual fragment screening. PLoS ONE 5:e10109

    Article  Google Scholar 

  9. Schulz M, Landström J, Bright K, Hubbard R (2011) Design of a fragment library that maximally represents available chemical space. J Comput Aided Mol Des 25:611–620

    Article  CAS  Google Scholar 

  10. Chen IJ, Hubbard R (2009) Lessons for fragment library design: analysis of output from multiple screening campaigns. J Comput Aided Mol Des 23:603–620

    Article  Google Scholar 

  11. Verdonk ML, Berdini V, Hartshorn MJ, Mooij WT, Murray CW, Taylor RD, Watson P (2004) Virtual screening using protein-ligand docking: avoiding artificial enrichment. J Chem Inf Comput Sci 44:793–806

    Article  CAS  Google Scholar 

  12. Chen Y, Shoichet BK (2009) Molecular docking and ligand specificity in fragment-based inhibitor discovery. Nat Chem Biol 5:358–364

    Article  CAS  Google Scholar 

  13. Chen Y, Pohlhaus DT (2010) In silico docking and scoring of fragments. Drug Discov Today Technol 7:e149–e156

    Article  CAS  Google Scholar 

  14. Rummey C, Nordhoff S, Thiemann M, Metz G (2006) In silico fragment-based discovery of DPP-IV S1 pocket binders. Bioorg Med Chem Lett 16:1405–1409

    Article  CAS  Google Scholar 

  15. Friedman R, Caflisch A (2009) Discovery of plasmepsin inhibitors by fragment-based docking and consensus scoring. ChemMedChem 4:1317–1326

    Article  CAS  Google Scholar 

  16. Verdonk ML, Giangreco I, Hall RJ, Korb O, Mortenson PN, Murray CW (2011) Docking performance of fragments and druglike compounds. J Med Chem 54:5422–5431

    Article  CAS  Google Scholar 

  17. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  18. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Mol Biol 10:980

    Article  CAS  Google Scholar 

  19. Dullweber F, Stubbs MT, Musil Đ, Stürzebecher J, Klebe G (2001) Factorising ligand affinity: a combined thermodynamic and crystallographic study of trypsin and thrombin inhibition. J Mol Biol 313:593–614

    Article  CAS  Google Scholar 

  20. Nar H, Bauer M, Schmid A, Stassen J-M, Wienen W, Priepke HWM, Kauffmann IK, Ries UJ, Hauel NH (2001) Structural basis for inhibition promiscuity of dual specific thrombin and factor Xa blood coagulation inhibitors. Structure 9:29–37

    CAS  Google Scholar 

  21. Brandt T, Holzmann N, Muley L, Khayat M, Wegscheid-Gerlach C, Baum B, Heine A, Hangauer D, Klebe G (2011) Congeneric but still distinct: how closely related trypsin ligands exhibit different thermodynamic and structural properties. J Mol Biol 405:1170–1187

    Article  CAS  Google Scholar 

  22. Presnell SR, Patil GS, Mura C, Jude KM, Conley JM, Bertrand JA, Kam C-M, Powers JC, Williams LD (1998) Oxyanion-mediated inhibition of serine proteases. Biochemistry 37:17068–17081

    Article  CAS  Google Scholar 

  23. Perilo CS, Pereira MT, Santoro MM, Nagem RAP (2010) Structural binding evidence of the trypanocidal drugs Berenil® and Pentacarinate® active principles to a serine protease model. Int J Biol Macromol 46:502–511

    Article  CAS  Google Scholar 

  24. Rauh D, Klebe G, Stubbs MT (2004) Understanding protein-ligand interactions: the price of protein flexibility. J Mol Biol 335:1325–1341

    Article  CAS  Google Scholar 

  25. Katz BA, Elrod K, Luong C, Rice MJ, Mackman RL, Sprengeler PA, Spencer J, Hataye J, Janc J, Link J, Litvak J, Rai R, Rice K, Sideris S, Verner E, Young W (2001) A novel serine protease inhibition motif involving a multi-centered short hydrogen bonding network at the active site. J Mol Biol 307:1451–1486

    Article  CAS  Google Scholar 

  26. Katz BA, Elrod K, Verner E, Mackman RL, Luong C, Shrader WD, Sendzik M, Spencer JR, Sprengeler PA, Kolesnikov A, Tai VWF, Hui HC, Breitenbucher JG, Allen D, Janc JW (2003) Elaborate manifold of short hydrogen bond arrays mediating binding of active site-directed serine protease inhibitors. J Mol Biol 329:93–120

    Article  CAS  Google Scholar 

  27. Whitlow M, Arnaiz DO, Buckman BO, Davey DD, Griedel B, Guilford WJ, Koovakkat SK, Liang A, Mohan R, Phillips GB, Seto M, Shaw KJ, Xu W, Zhao Z, Light DR, Morrissey MM (1999) Crystallographic analysis of potent and selective factor Xa inhibitors complexed to bovine trypsin. Acta Crystallogr Sect D 55:1395–1404

    Article  CAS  Google Scholar 

  28. Toyota E, Ng KKS, Sekizaki H, Itoh K, Tanizawa K, James MNG (2001) X-ray crystallographic analyses of complexes between bovine β-trypsin and schiff base copper(II) or iron(III) chelates. J Mol Biol 305:471–479

    Article  CAS  Google Scholar 

  29. Sherawat M, Kaur P, Perbandt M, Betzel C, Slusarchyk WA, Bisacchi GS, Chang C, Jacobson BL, Einspahr HM, Singh TP (2007) Structure of the complex of trypsin with a highly potent synthetic inhibitor at 0.97 A resolution. Acta Crystallogr Sect D 63:500–507

    Article  Google Scholar 

  30. Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD (2003) Improved protein-ligand docking using Gold. Protein Struct Funct Bioinf 52:609–623

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan I. Iorga.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 229 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surpateanu, G., Iorga, B.I. Evaluation of docking performance in a blinded virtual screening of fragment-like trypsin inhibitors. J Comput Aided Mol Des 26, 595–601 (2012). https://doi.org/10.1007/s10822-011-9526-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10822-011-9526-x

Keywords

Navigation