Skip to main content
Log in

Chemomechanics of complex materials: challenges and opportunities in predictive kinetic timescales

  • Published:
Scientific Modeling and Simulation SMNS

Abstract

What do nanoscopic biomolecular complexes between the cells that line our blood vessels have in common with the microscopic silicate glass fiber optics that line our communication highways, or with the macroscopic steel rails that line our bridges? To be sure, these are diverse materials which have been developed and studied for years by distinct experimental and computational research communities. However, the macroscopic functional properties of each of these structurally complex materials pivots on a strong yet poorly understood interplay between applied mechanical states and local chemical reaction kinetics. As is the case for many multiscale material phenomena, this chemomechanical coupling can be abstracted through computational modeling and simulation to identify key unit processes of mechanically altered chemical reactions. In the modeling community, challenges in predicting the kinetics of such structurally complex materials are often attributed to the so-called rough energy landscape, though rigorous connection between this simple picture and observable properties is possible for only the simplest of structures and transition states. By recognizing the common effects of mechanical force on rare atomistic events ranging from molecular unbinding to hydrolytic atomic bond rupture, we can develop perspectives and tools to address the challenges of predicting macroscopic kinetic consequences in complex materials characterized by rough energy landscapes. Here, we discuss the effects of mechanical force on chemical reactivity for specific complex materials of interest, and indicate how such validated computational analysis can enable predictive design of complex materials in reactive environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Walton E.B., Lee S., Vliet K.J.: Extending Bell’s model: how force transducer stiffness alters measured unbinding forces and kinetics of molecular complexes. Biophys. J. 94, 2621–2630 (2007)

    Article  CAS  Google Scholar 

  2. Silva E.C., Tong L., Yip S., Vliet K.J.: Size effects on the stiffness of silica nanowires. Small 2(2), 239–243 (2006)

    Article  PubMed  CAS  Google Scholar 

  3. Forst, C.J., Slycke, J., Van Vliet, K.J., Yip, S.: Point defect concentrations in metastable Fe–C alloys. Phys. Rev. Lett. 96(17) (2006)

  4. Andrews B.T., Schoenfish A.R., Roy M., Waldo G., Jennings P.A.: The rough energy landscape of superfolder GFP is linked to the chromophore. J. Mol. Biol. 373(2), 476–490 (2007)

    Article  PubMed  CAS  Google Scholar 

  5. Gruebele M.: Rough energy landscape of folded and unfolded proteins. Abstr. Pap. Am. Chem. Soc. 227, U267–U267 (2004)

    Google Scholar 

  6. Wang J., Huang W.M., Lu H.Y., Wang E.K.: Downhill kinetics of biomolecular interface binding: Globally connected scenario. Biophys. J. 87(4), 2187–2194 (2004)

    Article  PubMed  CAS  ADS  Google Scholar 

  7. Onuchic J.N., Wolynes P.G.: Energy landscapes, glass transitions, and chemical-reaction dynamics in biomolecular or solvent environment. J. Chem. Phys. 98(3), 2218–2224 (1993)

    Article  ADS  CAS  Google Scholar 

  8. Simka H., Willis B.G., Lengyel I., Jensen K.F.: chemistry predictions of reaction processes in organometallic vapor phase epitaxy. Progress in Crystal Growth and Characterization of Materials 35(2–4), 117–149 (1997)

    Article  CAS  Google Scholar 

  9. Wesolowski T., Muller R.P., Warshel A.: Ab initio frozen density functional calculations of proton transfer reactions in solution. J. Phys. Chem. 100(38), 15444–15449 (1996)

    Article  CAS  Google Scholar 

  10. Kim K., Jordan K.D.: Comparison of density-functional and Mp2 calculations on the water monomer and dimer. J. Phys. Chem. 98(40), 10089–10094 (1994)

    Article  CAS  Google Scholar 

  11. Henkelman G., Uberuaga B.P., Jonsson H.: A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113(22), 9901–9904 (2000)

    Article  ADS  CAS  Google Scholar 

  12. Henkelman G., Jonsson H.: Improved tangent estimate in the nudged elastic band method for finding minimum energy paths and saddle points. J. Chem. Phys. 113(22), 9978–9985 (2000)

    Article  ADS  CAS  Google Scholar 

  13. Sorensen M.R., Brandbyge M., Jacobsen K.W.: Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms. Phys. Rev. B 57(6), 3283–3294 (1998)

    Article  ADS  Google Scholar 

  14. Pincet F., Husson J.: The solution to the streptavidin-biotin paradox: the influence of history on the strength of single molecular bonds. Biophys. J. 89, 4374–4381 (2005)

    Article  PubMed  CAS  ADS  Google Scholar 

  15. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E.: Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397, 50–53 (1999)

    Article  PubMed  ADS  CAS  Google Scholar 

  16. Coureux P.-D., Fan X., Sojanoff V., Genick U.K.: Picometer-scale conformational heterogeneity separates functional from nonfunctional states of a photoreceptor protein. Structure 16, 863–872 (2008)

    Article  PubMed  CAS  Google Scholar 

  17. Kellou, A., Grosdidier, T., Aourag, H.: An ab initio study of the effects and stability of vacancies, antisites and small radius atoms (B, C, N, and O) in the B2–FeAl structure. In: Fisher, D.J. (ed.) Defects and Diffusion in Metals—An Annual Retrospective VII, vol. 233–234, pp. 87–95. Defect and Diffusion Forum (2004)

  18. Lau T.T., Foerst C.J., Lin X., Gale J.D., Yip S., Van Vliet K.J.: Many-body potential for point defect clusters in Fe–C alloys. Phys. Rev. Lett. 98(21), 215501 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  19. Legris, A.: Recent advances in point defect studies driven by density functional theory. In: Fisher, D.J. (ed.) Defects and Diffusion in Metals—An Annual Retrospective VII, vol. 233–234, pp. 77–86. Defect and Diffusion Forum (2004)

  20. Mizuno T., Asato M., Hoshino T., Kawakami K.: First-principles calculations for vacancy formation energies in Ni and Fe: non-local effect beyond the LSDA and magnetism. J. Magn. Magn. Mater. 226, 386–387 (2001)

    Article  ADS  Google Scholar 

  21. Simonetti S., Pronsato M.E., Brizuela G., Juan A.: The C–C pair in the vicinity of a bcc Fe bulk vacancy: electronic structure and bonding. Phys. Status Solidi B Basic Solid State Phys. 244(2), 610–618 (2007)

    Article  CAS  Google Scholar 

  22. Becquart C.S., Souidi A., Domain C., Hou M., Malerba L., Stoller R.E.: Effect of displacement cascade structure and defect mobility on the growth of point defect clusters under irradiation. J. Nucl. Mater. 351(1–3), 39–46 (2006)

    Article  ADS  CAS  Google Scholar 

  23. Domain C.: Ab initio modelling of defect properties with substitutional and interstitials elements in steels and Zr alloys. J. Nucl. Mater. 351(1–3), 1–19 (2006)

    Article  ADS  CAS  Google Scholar 

  24. Cao C., He Y., Torras J., Deumens E., Trickey S.B., Cheng H.P.: Fracture, water dissociation, and proton conduction in SiO2 nanochains. J. Chem. Phys. 126(21), 211101 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  25. Zhu T., Li J., Yip S., Bartlett R.J., Trickey S.B., Leeuw N.H.: Deformation and fracture of a SiO2 nanorod. Mol. simul. 29(10–11), 671–676 (2003)

    Article  CAS  Google Scholar 

  26. McConnell J.D.C.: Ab initio studies on water related species in quartz and their role in weakening under stress. Phase Transit. 61(1–4), 19–39 (1997)

    CAS  MathSciNet  Google Scholar 

  27. Silva, E., Van Vliet, K.J., Yip, S.: Effects of water on chemomechanical instabilities in amorphous silica: nanoscale experiments and molecular simulation. PhD Thesis, Silva, MIT, unpublished results (2007)

  28. Van Vliet, K.J., Li, J., Zhu, T., Yip, S., Suresh, S.: Quantifying the early stages of plasticity through nanoscale experiments and simulations. Phys. Rev. B 67(10)(2003)

  29. Li J., Zhu T., Yip S., Vliet K.J., Suresh S.: Elastic criterion for dislocation nucleation. Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 365(1–2), 25–30 (2004)

    Google Scholar 

  30. Li J., Vliet K.J., Zhu T., Yip S., Suresh S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418(6895), 307–310 (2002)

    Article  PubMed  ADS  CAS  Google Scholar 

  31. Coureux P.-D., Fan Z., Stojanoff V., Genick U.K.: Picometer-scale conformational heterogeneity separates functional and nonfunctional states of a photoreceptor protein. Structure 6, 863–872 (2008)

    Article  CAS  Google Scholar 

  32. Puklin-Faucher E., Gao M., Schulten K., Vogel V.: How the headpiece hinge angle is opened: new insights into the dynamics of integrin activation. J. Cell Biol. 175(2), 349–360 (2006)

    Article  PubMed  CAS  Google Scholar 

  33. Wriggers W., Mehler E., Pitici F., Weinstein H., Schulten K.: Structure and dynamics of calmodulin in solution. Biophys. J. 74(4), 1622–1639 (1998)

    PubMed  CAS  ADS  Google Scholar 

  34. Sheng Q., Schulten K., Pidgeon C.: Molecular-dynamics simulation of immobilized artificial membranes. J. Phys. Chem. 99(27), 11018–11027 (1995)

    Article  CAS  Google Scholar 

  35. Evans E., Ritchie K.: Dynamic strength of molecular adhesion bonds. Biophys. J. 72(4), 1541–1555 (1997)

    Article  PubMed  CAS  Google Scholar 

  36. Merkel R., Nassoy P., Leung A., Ritchie K., Evans E.: Energy landscapes of receptor–ligand bonds explored with dynamic force spectroscopy. Nature 397(6714), 50–53 (1999)

    Article  PubMed  ADS  CAS  Google Scholar 

  37. Lee S., Mandic J., Vliet K.J.: Chemomechanical mapping of ligand–receptor binding kinetics on cells. Proc. Natl. Acad. Sci. USA 104(23), 9609–9614 (2007)

    Article  PubMed  ADS  CAS  Google Scholar 

  38. Hinterdorfer P., Baumgartner W., Gruber H.J., Schilcher K., Schindler H.: Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93(8), 3477–3481 (1996)

    Article  PubMed  ADS  CAS  Google Scholar 

  39. Stroh C.M., Ebner A., Geretschlager M., Freudenthaler G., Kienberger F., Kamruzzahan A.S.M., Smith-Gil S.J., Gruber H.J., Hinterdorfer P.: Simultaneous topography and recognition Imaging using force microscopy. Biophys. J. 87(3), 1981–1990 (2004)

    Article  PubMed  CAS  ADS  Google Scholar 

  40. Vliet K.J., Hinterdorfer P.: Probing drug–cell interactions. Nano Today 1(3), 18–25 (2006)

    Article  Google Scholar 

  41. Walton E.B., Van Vliet K.J.: Equilibration of experimentally determined protein structures for molecular dynamics simulation. Phys. Rev. E 74(6), 061901 (2006)

    Article  ADS  CAS  Google Scholar 

  42. Evans E.: Looking inside molecular bonds at biological interfaces with dynamic force spectroscopy. Biophys. Chem. 82, 83–87 (1999)

    Article  PubMed  CAS  Google Scholar 

  43. McCammon J.A., Gelin B.R., Karplus M.: Dynamics offolded proteins. Nature 267, 585–590 (1977)

    Article  PubMed  ADS  CAS  Google Scholar 

  44. McCammon J.A., Karplus M.: Simulation of protein dynamics. Annu. Rev. Phys. Chem. 31, 29–45 (1980)

    Article  CAS  Google Scholar 

  45. Craig D., Gao M., Schulten K., Vogel V.: Structural insights into how the MIDAS ion stabilizes integrin binding to an RGD peptide under force. Structure 12(11), 2049–2058 (2004)

    Article  PubMed  CAS  Google Scholar 

  46. Isralewitz B., Izrailev S., Schulten K.: Binding pathway of retinal to bacterio-opsin: a prediction by molecular dynamics simulations. Biophys. J. 73(6), 2972–2979 (1997)

    PubMed  CAS  Google Scholar 

  47. Kosztin D., Izrailev S., Schulten K.: Unbinding of retinoic acid from its receptor studied by steered molecular dynamics. Biophys. J. 76(1), 188–197 (1999)

    PubMed  CAS  Google Scholar 

  48. Curcio R., Caflisch A., Paci E.: Change of the unbinding mechanism upon a mutation: a molecular dynamics study of an antibody–hapten complex. Protein Sci. 14(10), 2499–2514 (2005)

    Article  PubMed  CAS  Google Scholar 

  49. Paci E., Caflisch A., Pluckthun A., Karplus M.: Forces and energetics of hapten-antibody dissociation: a biased molecular dynamics simulation study. J. Mol. Biol. 314(3), 589–605 (2001)

    Article  PubMed  CAS  Google Scholar 

  50. Krishnan, R., Walton, E.B., Van Vliet, K.J.: in review (2008)

  51. Mendenhall, W., Beaver, R.J., Beaver, B.M.: Introduction to Probability and Statistics. 12th ed., Thomson Higher Education, Belmont, CA (2006)

  52. Chaturvedi S., Ocxhendorf J.: Global environmental impacts due to concrete and steel. Struct. Eng. Int. 14(3), 198–200 (2004)

    Article  Google Scholar 

  53. Ulm F.J., Constantinides G., Heukamp F.H.: Is concrete a poromechanics material?—a multiscale investigation of poroelastic properties. Mater. Struct. 37(265), 43–58 (2004)

    Article  CAS  Google Scholar 

  54. Jennings H.M., Thomas J.J., Gevrenov J.S., Constantinides G., Ulm F.J.: A multi-technique investigation of the nanoporosity of cement paste. Cem. Concr. Res. 37(3), 329–336 (2007)

    Article  CAS  Google Scholar 

  55. Constantinides G., Ulm F.J.: The effect of two types of C-S-H on the elasticity of cement-based materials: Results from nanoindentation and micromechanical modeling. Cem. Concr. Res. 34(1), 67–80 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystyn J. Van Vliet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Vliet, K.J. Chemomechanics of complex materials: challenges and opportunities in predictive kinetic timescales. Sci Model Simul 15, 67–80 (2008). https://doi.org/10.1007/s10820-008-9111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10820-008-9111-3

Keywords

Navigation