Skip to main content
Log in

Formally Verified Certificate Checkers for Hardest-to-Round Computation

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

In order to derive efficient and robust floating-point implementations of a given function f, it is crucial to compute its hardest-to-round points, i.e. the floating-point numbers x such that f(x) is closest to the midpoint of two consecutive floating-point numbers. Depending on the floating-point format one is aiming at, this can be highly computationally intensive. In this paper, we show how certificates based on Hensel’s lemma can be added to an algorithm using lattice basis reduction so that the result of a computation can be formally checked in the Coq proof assistant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Augot, D., Pecquet, L.: A Hensel lifting to replace factorization in list-decoding of algebraic-geometric and Reed-Solomon codes. IEEE Trans. Inf. Theory 46(7), 2605–2614 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bernstein, D.J.: Simplified high-speed high-distance list decoding for alternant codes. In: Yang, B.-Y. (ed.) PQCrypto, volume 7071 of LNCS, pp. 200–216. Springer (2011)

  3. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. Springer-Verlag (2004)

  4. Bertot, Y., Gonthier, G., Biha, S.O., Pasca, I.: Canonical big operators. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal. Proceedings, volume 5170 of LNCS, pp. 86–101. Springer (2008)

  5. Boespflug, M., Dénès, M, Grégoire, B.: Full Reduction at Full Throttle. In: Jouannaud, J.-P., Shao, Z. (eds.) CPP, volume 7086 of LNCS, pp. 362–377. Springer (2011)

  6. Boneh, D.: Finding smooth integers in short intervals using CRT decoding. J. Comput. Syst. Sci. 64(4), 768–784 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Brisebarre, N., Joldeş, M., Martin-Dorel, É., Mayero, M., Muller, J.-M., Paşca, I., Rideau, L., Théry, L.: Rigorous polynomial approximation using Taylor models in Coq. In: Goodloe, A., Person, S. (eds.) NASA Formal Methods 2012, volume 7226 of LNCS, pp. 85–99. Springer (2012)

  8. Chrza̧szcz, J.: Implementing modules in the Coq system. In: Basin D.A., Wolff, B. (eds.) TPHOLs, volume 2758 of LNCS, pp. 270–286. Springer (2003)

  9. Chrza̧szcz, J.: Modules in Coq are and will be correct. In: Berardi, S., Coppo, M., Damiani, F. (eds.) TYPES, volume 3085 of LNCS, pp. 130–146. Springer (2003)

  10. Cohen, C., Dénès, M., Mörtberg, A.: Refinements for free! In: Gonthier, G., Norrish, M. (eds.) CPP, volume 8307 of LNCS, pp. 147–162. Springer (2013)

  11. Coppersmith, D.: Finding a small root of a bivariate integer equation; factoring with high bits known. In: Maurer, M.U.M. (ed) Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic Techniques, Saragossa. Proceeding, volume 1070 of LNCS, pp. 178–189. Springer (1996)

  12. Coppersmith, D.: Finding a small root of a univariate modular equation. In: Maurer, M.U.M. (ed.) Advances in Cryptology - EUROCRYPT ’96, International Conference on the Theory and Application of Cryptographic Techniques, Saragossa. Proceeding, volume 1070 of LNCS, pp. 155–165. Springer (1996)

  13. Coppersmith, D.: Small solutions to polynomial equations, and low exponent RSA vulnerabilities. J. Cryptol. 10(4), 233–260 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. The Coq Development Team: The Coq Proof Assistant: Reference Manual: version 8.4pl4, 2014. Available from: http://coq.inria.fr/distrib/current/refman/

  15. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational algebra in Coq. In: Beringer, L., Felty, A.P. (eds.) ITP, volume 7406 of LNCS, pp. 83–98. Springer (2012)

  16. Gonthier, G., Mahboubi, A.: A small scale reflection extension for the Coq system. Research Report RR-6455, INRIA (2008)

  17. Gonthier, G., Mahboubi, A.: An introduction to small scale reflection in Coq. J. Formalized Reason. 3(2), 95–152 (2010)

    MathSciNet  MATH  Google Scholar 

  18. Guruswami, V., Sudan, M.: Improved decoding of Reed-Solomon and algebraic-geometry codes. IEEE Trans. Inf. Theory 45(6), 1757–1767 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Haftmann, F., Krauss, A., Kuncar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes. Proceedings, volume 7998 of LNCS, pp. 100–115. Springer (2013)

  20. Hensel, K: Neue Grundlagen der Arithmetik. J. für die reine und angewandte Mathematik (Crelle’s Journal) 1904(127), 51–84 (1904). doi:10.1515/crll.1904.127.51

    Google Scholar 

  21. Karatsuba, A., Ofman, Y.: Multiplication of many-digital numbers by automatic computers. Doklady Akad. Nauk SSSR 145, 293–294 (1963). Translation in Physics-Doklady, 7,595–596

    Google Scholar 

  22. Kobayashi, H., Suzuki, H., Ono, Y.: Formalization of Hensel’s lemma. In: Theorem Proving in Higher Order Logics: Emerging Trends Proceedings, number PRG-RR-05-02 in Oxford University Computing Laboratory Research Reports, pp. 114–127 (2005)

  23. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving - 4th International Conference, ITP 2013, Rennes. Proceedings, volume 7998 of LNCS, pp. 84–99. Springer (2013)

  24. Lenstra, A.K., Lenstra, H.W. Jr., Lovász, L.: Factoring polynomials with rational coefficients. Mathematische Annalen 261, 515–534 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  25. Martin-Dorel, É.: Contributions to the Formal Verification of Arithmetic Algorithms. PhD thesis, École Normale Supérieure de Lyon, Lyon, France, 2012. Available from: http://tel.archives-ouvertes.fr/tel-00745553/en/

  26. Martin-Dorel, É., Mayero, M., Paşca, I., Rideau, L., Théry, L.: Certified, efficient and sharp univariate taylor models in COQ. In: SYNASC 2013, pp. 193–200. IEEE, Timişoara (2013)

  27. Muller, J.-M., Brisebarre, N., de Dinechin, F, Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N, Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)

    Book  MATH  Google Scholar 

  28. Saïbi, A.: Typing algorithm in type theory with inheritance. In: POPL, pp. 292–301 (1997)

  29. Sozeau, M., Oury, N.: First-class type classes. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) Theorem Proving in Higher Order Logics, 21st International Conference, TPHOLs 2008, Montreal. Proceedings, volume 5170 of LNCS, pp. 278–293. Springer (2008)

  30. Stehlé, D.: Algorithmique de la réduction des réseaux et application à la recherche de pires cas pour l’arrondi des fonctions mathématiques. PhD thesis, Université Nancy, 1, Henri Poincaré (2005)

  31. Stehlé, D.: On the randomness of bits generated by sufficiently smooth functions. In: Hess, F., Pauli, S., Pohst, M.E. (eds.) Algorithmic Number Theory, 7th International Symposium, ANTS-VII, Berlin. Proceedings, volume 4076 of LNCS, pp. 257–274. Springer (2006)

  32. Stehlé, D., Lefèvre, V., Zimmermann, P.: Searching worst cases of a one-variable function using lattice reduction. IEEE Trans. Comput. 54 (3), 340–346 (2005)

    Article  MATH  Google Scholar 

  33. Steuding, J.: Diophantine Analysis. Chapman & Hall/CRC (2005)

  34. Stewart, G.W.: On the adjugate matrix. Lin. Algebra Appl. 283(1–3), 151–164 (1998)

    Article  MATH  Google Scholar 

  35. Joachim von zur, G, Gerhard, J.: Modern Computer Algebra, 2nd edn. Cambridge University Press (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Érik Martin-Dorel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin-Dorel, É., Hanrot, G., Mayero, M. et al. Formally Verified Certificate Checkers for Hardest-to-Round Computation. J Autom Reasoning 54, 1–29 (2015). https://doi.org/10.1007/s10817-014-9312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-014-9312-2

Keywords

Navigation