Skip to main content
Log in

The Reachability Problem in Constructive Geometric Constraint Solving Based Dynamic Geometry

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

An important issue in dynamic geometry is the reachability problem that asks whether there is a continuous path that, from a given starting geometric configuration, continuously leads to an ending configuration. In this work we report on a technique to compute a continuous evaluation path, if one exists, that solves the reachability problem for geometric constructions with one variant parameter. The technique is developed in the framework of a constructive geometric constraint-based dynamic geometry system, uses the A ∗  algorithm and minimizes the variant parameter arc length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bouma, W., Fudos, I., Hoffmann, C., Cai, J., Paige, R.: Geometric constraint solver. Comput. Aided Des. 27(6), 487–501 (1995)

    Article  MATH  Google Scholar 

  2. Brüderlin, B.D.: Rule-based geometric modelling. PhD thesis, Institut für Informatik der ETH Zürich (1988)

  3. Bournez, O., Potapov, I. (eds.): Reachability problems. In: LNCS, Theoretical Notes in Computer Science, vol. 5797. Palaiseau, France (2009)

  4. Denner-Broser, B.: On the decidability of tracing problems in dynamic geometry. In: Hong, H., Wang, D. (eds.) LNAI 3763, pp. 111–129. Springer (2006)

  5. Denner-Broser, B.: Tracing problems in dynamic geometry. PhD thesis, Institut für Informatik, Freie Universität Berlin (2008)

  6. Denner-Broser, B.: An algorithm for the tracing problem using interval analysis. In: SAC’08, pp. 1832–1837. Fortaleza, Ceará, Brazil (2008)

  7. DynBCN: A constructive geometric constraint-based dynamic geometry system. http://floss.lsi.upc.edu. Accessed 27 Nov 2012

  8. Foley, J., van Dam, A., Feiner, S., Hughes, J.: Computer graphics. In: Principles and Practice, 2nd edn. Addison-Wesley, Reading (1996)

    Google Scholar 

  9. Freixas, M., Joan-Arinyo, R., Soto-Riera, A.: A constraint-based dynamic geometry system. Comput. Aided Des. 42(2), 151–161 (2010)

    Article  Google Scholar 

  10. Fudos, I., Hoffmann, C.M.: Correctness proof of a geometric constraint solver. Int. J. Comput. Geom. Appl. 6(4), 405-420 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Golledge, R., Klatzy, R., Loomis, J., Speigle, J., Tietz, J.: A geographical information system for a GPS based personal guidance system. Int. J. Geogr. Inf. Sci. 12(7), 727–749 (1998)

    Article  Google Scholar 

  12. Halabi, S.: Internet Routing Architectures, 2nd edn. Cisco Press (2000)

  13. Hidalgo, M., Joan-Arinyo, R.: Computing parameter ranges in constructive geometric constraint solving: implementation and correctness proof. Comput. Aided Des. 44(7), 709–720 (2012)

    Article  Google Scholar 

  14. Hoffmann, C., Joan-Arinyo, R.: A brief on constraint solving. Comput. Aided Des. Appl. 2(5), 655–663 (2005)

    Google Scholar 

  15. Hoffmann, C., Lomonosov, A., Sitharam, M.: Decompostion plans for geometric constraint systems, part I: performance measurements for CAD. J. Symb. Comput. 31, 367–408 (2001)

    Article  MathSciNet  Google Scholar 

  16. Hoffmann, C., Lomonosov, A., Sitharam, M.: Decompostion plans for geometric constraint problems, part II: new algorithms. J. Symb. Comput. 31, 409–427 (2001)

    Article  MathSciNet  Google Scholar 

  17. Jerman, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of geometric constraint systems: a survey. Int. J. Comput. Geom. Appl. 16(5–6), 379–414 (2006)

    Article  Google Scholar 

  18. Joan-Arinyo, R., Soto, A.: A correct rule-based geometric constraint solver. Comput. Graph. 21(5), 599–609 (1997)

    Article  Google Scholar 

  19. Joan-Arinyo, R., Soto-Riera, A., Vila-Marta, S., Vilaplana, J.: On the domain of constructive geometric constraint solving techniques. In: Duricovic, R., Czanner, S. (eds.) Spring Conference on Computer Graphics, pp. 49–54. IEEE Computer Society, Los Alamitos, CA, Budmerice, Slovakia (2001)

  20. Joan-Arinyo, R., Luzón, M., Soto, A.: Genetic algorithms for root multiselection in constructive geometric constraint solving. Comput. Graph. 27(1), 51–60 (2003)

    Article  Google Scholar 

  21. Joan-Arinyo, R., Luzón, M., Yeguas, E.: Search space pruning to solve the root identification problem in geometric constraint solving. Comput. Aided Des. Appl. 6(1), 15–25 (2009)

    Google Scholar 

  22. Kang, M.W., Pha, M., Hwang, D.: Part I. A GIS-based simulation model for positioning & routing unmanned ground vehicles. Tech. rep., Center for Advanced Transportation and Infrastrcuture Engineering, Morgan State University (2010)

  23. Kleene, S.C.: Mathematical Logic. Wiley, New York (1967)

    MATH  Google Scholar 

  24. Kortenkamp, U.: Foundations of dynamic geometry. PhD Thesis, Swiss Federal Institute of Technology Zurich (1999)

  25. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Eng. Math. 4(4), 331–340 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  26. Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebr. Discrete Methods 3(1), 91–98 (1982)

    Article  MATH  Google Scholar 

  27. Richter-Gebert, J., Kortenkamp, U.H.: Complexity issues in dynamic geometry. In: Proceedings of the Smale Fest 2000, Foundations Computational Mathematics, pp. 1–37. World Scientific, Singapore (2001)

    Google Scholar 

  28. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall, Upper Saddle River (2003)

    Google Scholar 

  29. van der Meiden, H., Bronsvoort, W.: An efficient method to determine the intended solution for a system of geometric constraints. Int. J. Comput. Geom. 15(3), 79–98 (2005)

    Google Scholar 

  30. van der Meiden, H., Bronsvoort, W.: A constructive approach to calculate parameter ranges for systems of geometric constraints. Comput. Aided Des. 38(4), 275–283 (2006)

    Article  Google Scholar 

  31. Winroth, H.: Dynamic projective geometry. PhD Thesis, Stockholms Universitet (1999)

  32. Yang, J., Dymond, P., Jenkin, M.: Exploiting hierarchical probabilistic motion planning for robot reachable workspace estimation. Informatics Control Autom. Robot 85, 229–241 (2011). doi:10.1007/978-3-642-19730-7_16

    Article  Google Scholar 

  33. Ying, Z., Iyengar, S.S.: Robot reachability problem: a nonlinear optimization approach. J. Intell. Robot. Syst. 12(1), 87–100 (2011). doi:10.1007/BF01258308

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Joan-Arinyo.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(OGV 4.07 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidalgo, M.R., Joan-Arinyo, R. The Reachability Problem in Constructive Geometric Constraint Solving Based Dynamic Geometry. J Autom Reasoning 52, 99–122 (2014). https://doi.org/10.1007/s10817-013-9280-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-013-9280-y

Keywords

Navigation