Skip to main content
Log in

The Area Method

A Recapitulation

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

The area method for Euclidean constructive geometry was proposed by Chou, Gao and Zhang in the early 1990’s. The method can efficiently prove many non-trivial geometry theorems and is one of the most interesting and most successful methods for automated theorem proving in geometry. The method produces proofs that are often very concise and human-readable. In this paper, we provide a first complete presentation of the method. We provide both algorithmic and implementation details that were omitted in the original presentations. We also give a variant of Chou, Gao and Zhang’s axiom system. Based on this axiom system, we proved formally all the lemmas needed by the method and its soundness using the Coq proof assistant. To our knowledge, apart from the original implementation by the authors who first proposed the method, there are only three implementations more. Although the basic idea of the method is simple, implementing it is a very challenging task because of a number of details that has to be dealt with. With the description of the method given in this paper, implementing the method should be still complex, but a straightforward task. In the paper we describe all these implementations and also some of their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Development. Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical Computer Science. An EATCS Series. Springer (2004)

  2. Buchberger, B., Craciun, A., Jebelean, T., Kovacs, L., Kutsia, T., Nakagawa, K., Piroi, F., Popov, N., Robu, J., Rosenkranz, M., Windsteiger, W.: Theorema: towards computer-aided mathematical theory exploration. Journal of Applied Logic 4, 470–504 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chou, S., Gao, X., Zhang, J.: An introduction to geometry expert. In: McRobbie, M.A., Slaney, J.K. (eds.) Proc. CADE-13. Lecture Notes in Computer Science, vol. 1104, pp. 235–239. Springer (1996)

  4. Chou, S.C.: Proving and Discovering Geometry Theorems using Wu’s Method. Ph.D. thesis, The University of Texas, Austin (1985)

  5. Chou, S.C.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht (1987)

    Book  Google Scholar 

  6. Chou, S.C.: Mechanical Geometry Theorem Proving. Reidel, Dordrecht (1988)

    MATH  Google Scholar 

  7. Chou, S.C., Gao, X.S.: Automated reasoning in geometry. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Automated Reasoning, pp. 707–749. Elsevier and MIT Press (2001)

    Google Scholar 

  8. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated production of traditional proofs for constructive geometry theorems. In: Vardi, M. (ed.) Proceedings of the Eighth Annual IEEE Symposium on Logic in Computer Science LICS, pp. 48–56. IEEE Computer Society Press (1993)

  9. Chou, S.C., Gao, X.S., Zhang, J.Z.: Machine Proofs in Geometry. World Scientific, Singapore (1994)

    Book  MATH  Google Scholar 

  10. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated production of traditional proofs in solid geometry. J. Autom. Reason. 14, 257–291 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with geometric invariants, I. Multiple and shortest proof generation. J. Autom. Reason. 17, 325–347 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Chou, S.C., Gao, X.S., Zhang, J.Z.: Automated generation of readable proofs with geometric invariants, II. theorem proving with full-angles. J. Autom. Reason. 17, 349–370 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chou, S.C., Gao, X.S., Zhang, J.Z.: A deductive database approach to automated geometry theorem proving and discovering. J. Autom. Reason. 25, 219–246 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Coelho, H., Pereira, L.M.: Automated reasoning in geometry theorem proving with prolog. J. Autom. Reason. 2(4), 329–390 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Automata Theory and Formal Languages 2nd GI Conference Kaiserslautern, 20–23 May 1975. Lecture Notes In Computer Science, vol. 33, pp. 134–183. Springer (1975)

  16. Dehlinger, C., Dufourd, J.F., Schreck, P.: Higher-order intuitionistic formalization and proofs in Hilbert’s elementary geometry. In: Richter-Gebert, D.W.J. (ed.) Proceedings of Automated Deduction in Geometry (ADG00). Lecture Notes in Computer Science, vol. 2061, pp. 306–324 (2000)

  17. Duprat, J.: The Euclid’s plane: formalization and implementation in Coq. In: Proceedings of ADG’10 (2010)

  18. Elcock, E.W.: Representation of knowledge in geometry machine. Mach. Intell. 8, 11–29 (1977)

    Google Scholar 

  19. Gao, X.S., Lin, Q.: MMP/Geometer—a software package for automated geometric reasoning. In: Winkler, F. (ed.) Proceedings of Automated Deduction in Geometry (ADG02). Lecture Notes in Computer Science, vol. 2930, pp. 44–66. Springer (2004)

  20. Gelernter, H.: Realization of a geometry-theorem proving machine. In: Computers & Thought, pp. 134–152. MIT Press, Cambridge (1995)

    Google Scholar 

  21. Geuvers, H., et al.: The “Fundamental Theorem of Algebra” project. http://www.cs.ru.nl/~freek/fta/ (2008)

  22. Gonthier, G., Werner, B.: A Computer Checked Proof of the Four Colour Theorem (2004)

  23. Greeno, J., Magone, M.E., Chaiklin, S.: Theory of constructions and set in problem solving. Mem. Cogn. 7(6), 445–461 (1979)

    Article  Google Scholar 

  24. Guilhot, F.: Formalisation en Coq d’un cours de géométrie pour le lycée. In: Journées Francophones des Langages Applicatifs (2004)

  25. Hales, T.C.: Introduction to the Flyspeck project. In: Coquand, T., Lombardi, H., Roy, M.F. (eds.) Mathematics, Algorithms, Proofs, Dagstuhl Seminar Proceedings, vol. 05021. Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2006)

    Google Scholar 

  26. Heath, T.L.: The Thirteen Books of Euclid’s Elements, 2nd edn. Dover, New York (1956)

    MATH  Google Scholar 

  27. Hilbert, D.: In: Barnays, P. (ed.) Foundations of Geometry, 10th rev. edn. Open Court, La Salle (1977)

  28. Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq Proof Assistant—A Tutorial, version 8.0 (2004). http://coq.inria.fr

  29. Janičić, P.: GCLC—a tool for constructive Euclidean geometry and more than that. In: Takayama, N., Iglesias, A., Gutierrez, J. (eds.) Proceedings of International Congress of Mathematical Software (ICMS 2006). Lecture Notes in Artificial Intelligence, vol. 4151. Springer (2006)

  30. Janičić, P., Quaresma, P.: Automatic verification of regular constructions in dynamic geometry systems. In: Botana, F., Recio, T. (eds.) Proceedings of Automated Deduction in Geometry (ADG06). Lecture Notes in Artificial Intelligence, vol. 4869, pp. 39–51. Springer, Pontevedra (2007)

  31. Janičić, P.: One Method for Automathed Theorem Proving in Geometry. Master’s thesis, Faculty of Mathematics, University of Belgrade. In Serbian (1996)

  32. Janičić, P.: Geometry constructions language. J. Autom. Reason. 44(1–2), 3–24 (2010)

    MATH  Google Scholar 

  33. Janičić, P., Quaresma, P.: System description: GCLCprover + GeoThms. In: Ulrich, F., Natarajan, S. (eds.) Automated Reasoning. Lecture Notes in Artificial Intelligence, vol. 4130, pp. 145–150. Springer (2006)

  34. Kahn, G.: Constructive Geometry According to Jan von Plato. Coq Contribution (1995). Coq V5.10

  35. Kapur, D.: Geometry theorem proving using Hilbert’s nullstellensatz. In: SYMSAC ’86: Proceedings of the Fifth ACM Symposium on Symbolic and Algebraic Computation, pp. 202–208. ACM Press, New York (1986)

    Chapter  Google Scholar 

  36. Kapur, D.: Using Gröbner bases to reason about geometry problems. J. Symb. Comput. 2(4), 399–408 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kortenkamp, U., Richter-Gebert, J.: Using automatic theorem proving to improve the usability of geometry software. In: Workshop on Mathematical User Interfaces (2004)

  38. Leroy, X.: Formal certification of a compiler back-end, or: programming a compiler with a proof assistant. In: 33rd Symposium Principles of Programming Languages, pp. 42–54. ACM Press, New York (2006)

    Google Scholar 

  39. Li, H.: Clifford algebra approaches to mechanical geometry theorem proving. In: Gao, X.S., Wang, D. (eds.) Mathematics Mechanization and Applications, pp. 205–299. Academic, San Diego (2000)

    Google Scholar 

  40. Magaud, N., Narboux, J., Schreck, P.: Formalizing Desargues’ theorem in Coq using ranks. In: Shin, S.Y., Ossowski, S. (eds.) SAC, pp. 1110–1115. ACM Press, New York (2009)

    Chapter  Google Scholar 

  41. Magaud, N., Narboux, J., Schreck, P.: Formalizing projective plane geometry in Coq. In: Sturm, T. (ed.) Proceedings of Automated Deduction in Geometry (ADG08). Lecture Notes inArtifical Intelligence, vol. 6301. Springer

  42. Meikle, L., Fleuriot, J.: Formalizing Hilbert’s Grundlagen in Isabelle/Isar. In: Basin, D.A., Wolff, B. (eds.) Theorem Proving in Higher Order Logics. Lecture Notes in Computer Science, vol. 2758, pp. 319–334. Springer (2003)

  43. Narboux, J.: A decision procedure for geometry in Coq. In: Konrad, S., Annett, B., Ganesh, G. (eds.) Proceedings of TPHOLs’2004. Lecture Notes in Computer Science, vol. 3223. Springer (2004)

  44. Narboux, J.: Formalisation et Automatisation du Raisonnement Géométrique en Coq. Ph.D. thesis, Université Paris Sud (2006)

  45. Narboux, J.: A graphical user interface for formal proofs in geometry. J. Autom. Reason. 39(2), 161–180 (2007)

    Article  MATH  Google Scholar 

  46. Narboux, J.: Mechanical theorem proving in Tarski’s geometry. In: Proceedings of Automatic Deduction in Geometry 06. Lecture Notes in Artificial Intelligence, vol. 4869, pp. 139–156. Springer (2007)

  47. Narboux, J.: Formalization of the Area Method. Coq User Contribution (2009). http://dpt-info.u-strasbg.fr/~narboux/area_method.html

  48. Nevis, A.: Plane geometry theorem proving using forward chaining. Artif. Intell. 6(1), 1–23 (1975)

    Article  Google Scholar 

  49. Predović, G.: Automated Geometry Theorem Proving Based on Wu’s and Buchberger’s Methods. Master’s thesis, Faculty of Mathematics, University of Belgrade. Supervisor: Predrag Janičić. In Serbian (2008)

  50. Quaresma, P., Janičić, P.: Framework for Constructive Geometry (Based on the Area Method). Tech. Rep. 2006/001, Centre for Informatics and Systems of the University of Coimbra (2006)

  51. Quaresma, P., Janičić, P.: Geothms—a web system for Euclidean constructive geometry. In: Autexier, S., Benzmüller, C. (eds.) UITP 2006, vol. 174, pp. 21–33 (2006)

  52. Quaresma, P., Janičić, P.: Geothms—Geometry Framework. Tech. Rep. 2006/002, Centre for Informatics and Systems of the University of Coimbra (2006)

  53. Quaresma, P., Janičić, P.: Integrating dynamic geometry software, deduction systems, and theorem repositories. In: Borwein, J.M., Farmer, W.M. (eds.) Mathematical Knowledge Management. Lecture Notes in Artificial Intelligence, vol. 4108, pp. 280–294. Springer (2006)

  54. Quaresma, P., Janičić, P.: The Area Method—Properties and Their Proofs. Tech. Rep. 2009/006, Centre for Informatics and Systems of the University of Coimbra (2009)

  55. Quaresma, P., Pereira, A.: Visualização de construções geométricas. Gaz. Mat. 151 (2006)

  56. Robu, J.: Geometry Theorem Proving in the Frame of the Theorema Project. Ph.D. thesis, Johannes Kepler Universität, Linz (2002)

  57. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1951)

  58. Tarski, A.: What is elementary geometry? In: Henkin, P.S.L., Tarski, A. (eds.) The Axiomatic Method, with Special Reference to Geometry and Physics, pp. 16–29. North-Holland, Amsterdam (1959)

    Google Scholar 

  59. The Coq Development Team: The Coq Proof Assistant Reference Manual, version 8.2. TypiCal Project (2009). http://coq.inria.fr

  60. von Plato, J.: The axioms of constructive geometry. In: Annals of Pure and Applied Logic, vol. 76, pp. 169–200 (1995)

  61. von Plato, J.: Formalization of Hilbert’s geometry of incidence and parallelism. In: Synthese, vol. 110, pp. 127–141. Springer (1997)

  62. Wang, D.: Reasoning about geometric problems using an elimination method. In: Pfalzgraf, J., Wang, D. (eds.) Automated Practical Reasoning, pp. 147–185. Springer, New York (1995)

    Chapter  Google Scholar 

  63. Wu, W.T.: On the decision problem and the mechanization of theorem proving in elementary geometry. In: Automated Theorem Proving: After 25 Years, vol. 29, pp. 213–234. American Mathematical Society (1984)

  64. Yang, L., Gao, X., Chou, S., Zhang, Z.: Automated proving and discovering of theorems in non-euclidean geometries. In: Proceedings of Automated Deduction in Geometry (ADG98). Lecture Notes in Artificial Intelligence, vol. 1360, pp. 171–188. Springer, Berlin (1998)

    Chapter  Google Scholar 

  65. Ye, Z., Chou, S.C., Gao, X.S.: Visually dynamic presentation of proofs in plane geometry. Part 1. Basic features and the manual input method. J. Autom. Reason. 45(3), 213–241 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  66. Ye, Z., Chou, S.C., Gao, X.S.: Visually dynamic presentation of proofs in plane geometry. Part 2. Automated generation of visually dynamic presentations with the full-angle method and the deductive database method. J. Autom. Reason. 45(3), 243–266 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  67. Zhang, J.Z., Chou, S.C., Gao, X.S.: Automated production of traditional proofs for theorems in Euclidean geometry. Ann. Math. Artif. Intell. 13, 109–137 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Quaresma.

Additional information

The first author is partially supported by the grant 144030 of the Ministry of Science of Serbia. The second author is partially supported by the ANR project Galapagos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janičić, P., Narboux, J. & Quaresma, P. The Area Method. J Autom Reasoning 48, 489–532 (2012). https://doi.org/10.1007/s10817-010-9209-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9209-7

Keywords

Navigation