Skip to main content
Log in

Resolution with Order and Selection for Hybrid Logics

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

We investigate labeled resolution calculi for hybrid logics with inference rules restricted via selection functions and orders. We start by providing a sound and refutationally complete calculus for the hybrid logic \(\mathcal{H}(@,{\downarrow},\mathsf{A})\), even under restrictions by selection functions and orders. Then, by imposing further restrictions in the original calculus, we develop a sound, complete and terminating calculus for the \(\mathcal{H}(@)\) sublanguage. The proof scheme we use to show refutational completeness of these calculi is an adaptation of a standard completeness proof for saturation-based calculi for first-order logic that guarantees completeness even under redundancy elimination. In fact, one of the contributions of this article is to show that the general framework of saturation-based proving for first-order logic with equality can be naturally adapted to saturation-based calculi for other languages, in particular modal and hybrid logics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abadi, M., Manna, Z.: Modal theorem proving. In: Proceedings of the 8th International Conference on Automated Deduction, pp. 172–189 (1986)

  2. Abadi, M., Manna, Z.: A timely resolution. In: Proceedings of the 1st IEEE Symposium on Logic in Computer Science, pp. 176–186 (1986)

  3. Achmidt, R.: A new methodology for developing deduction methods. Ann. Math. Artif. Intell. 55(1–2), 155–187 (2009)

    MathSciNet  Google Scholar 

  4. Areces, C.: Logic engineering. The case of description and hybrid logics. Ph.D. thesis, Institute for Logic, Language and Computation, University of Amsterdam (2000)

  5. Areces, C., Blackburn, P., Marx, M.: A road-map on complexity for hybrid logics. In: Proceedings of the 8th Annual Conference of the EACSL, pp. 307–321 (1999)

  6. Areces, C., Blackburn, P., Marx, M.: The computational complexity of hybrid temporal logics. Log. J. IGPL 8(5), 653–679 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Areces, C., de Nivelle, H., de Rijke, M.: Resolution in modal, description and hybrid logic. J. Log. Comput. 11(5), 717–736 (2001)

    Article  MATH  Google Scholar 

  8. Areces, C., Gennari, R., Heguiabehere, J., de Rijke, M.: Tree-based heuristics in modal theorem proving. In: Horn, W. (ed.) Proceedings of ECAI 2000, pp. 199–203 (2000)

  9. Areces, C., Gorín, D.: Ordered resolution with selection for \(\mathcal{H}(@)\). In: Baader, F., Voronkov, A. (eds.) Proceedings of LPAR 2004. LNCS, vol. 3452, pp. 125–141. Springer, New York (2005)

    Google Scholar 

  10. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics, pp. 821–868. Elsevier, Amsterdam (2006)

    Google Scholar 

  11. Auffray, Y., Enjalbert, P., Hebrard, J.: Strategies for modal resolution: results and problems. J. Autom. Reason. 6(1), 1–38 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  12. Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  13. Bachmair, L., Ganzinger, H.: Equational reasoning in saturation-based theorem proving. In: Automated Deduction—a Basis for Applications, vol. I, pp. 353–397. Kluwer, Boston (1998)

    Google Scholar 

  14. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, chap. 2, pp. 19–99. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  15. Bieber, P., Fariñas del Cerro, L., Herzig, A.: MOLOG: a modal PROLOG. In: Proceedings of the 9th International Conference on Automated Deduction, pp. 762–763 (1988)

  16. Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto. Log. J. IGPL 8(3), 339–365 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  18. Blackburn, P., Wolter, F., van Benthem, J. (eds.): Handbook of Modal Logics. Elsevier, Amsterdam (2006)

    Google Scholar 

  19. Cialdea, M., Fariñas del Cerro, L.: A modal Herbrand’s property. Z. Math. Log. Grundl. Math. 32, 523–530 (1986)

    Article  MATH  Google Scholar 

  20. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT, Cambridge (2000)

    Google Scholar 

  21. de Nivelle, H., de Rijke, M.: Deciding the guarded fragments by resolution. J. Symb. Comput. 35(1), 21–58 (2003)

    Article  MATH  Google Scholar 

  22. de Nivelle, H., Schmidt, R., Hustadt, U.: Resolution-based methods for modal logics. Log. J. IGPL 8(3), 265–292 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  23. Enjalbert, P., Fariñas del Cerro, L.: Modal resolution in clausal form. Theor. Comp. Sci. 65(1), 1–33 (1989)

    Article  MATH  Google Scholar 

  24. Fariñas del Cerro, L.: A simple deduction method for modal logic. Inf. Process. Lett. 14(2), 47–51 (1982)

    Google Scholar 

  25. Fariñas del Cerro, L.: Resolution modal logic. In: Apt, K. (ed.) Logics and Models of Concurrent Systems, pp. 27–55. Springer, Berlin (1985)

    Google Scholar 

  26. Fariñas del Cerro, L.: MOLOG: a system that extends PROLOG with modal logic. New Gener. Comput. 4(1), 35–50 (1986)

    Article  MATH  Google Scholar 

  27. Fitting, M.: Destructive modal resolution. J. Log. Comput. 1(1), 83–97 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  28. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality. In: LICS ’99: Proceedings of the 14th Annual IEEE Symposium on Logic in Computer Science, p. 295. IEEE Computer Society, Los Alamitos (1999)

    Google Scholar 

  29. Giese, M., Ahrendt, W.: Hilbert’s ε-terms in automated theorem proving. In: Murray, N. (ed.) Automated Reasoning with Analytic Tableaux and Related Methods, Intl. Conf. (TABLEAUX’99). LNAI, vol. 1617, pp. 171–185. Springer, Berlin (1999)

    Chapter  Google Scholar 

  30. Grädel, E.: On the restraining power of guards. J. Symb. Log. 64, 1719–1742 (1999)

    Article  MATH  Google Scholar 

  31. Grädel, E.: Why are modal logics so robustly decidable? In: Current Trends in Theoretical Computer Science: Entering the 21st Centuary, pp. 393–408. World Scientific, Singapore (2001)

    Google Scholar 

  32. Herbrand, J.: Recherches sur la théorie de la démonstrations. Ph.D. thesis, Sorbone (1930). Reprinted In: Goldfarb, W. (ed.) Logical Writings. Reidel, Dordrecht (1971)

  33. Hilbert, D., Bernays, P.: Grundlagen der Mathematik, vol. 2. Springer, Berlin (1939)

    Google Scholar 

  34. Hustadt, U., Schmidt, R.: Using resolution for testing modal satisfiability and building models. J. Autom. Reason. 28(2), 205–232 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  35. Kazakov, Y.: Saturation-based decision procedures for extensions of the guarded fragment. Ph.D. thesis, Universität des Saarlandes (2006)

  36. Kazakov, Y., Motik, B.: A resolution-based decision procedure for SHOIQ. J. Autom. Reason. 40(2–3), 89–116 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  37. Knuth, D., Bendix, P.: Simple word problems in universal algebras. In: Leech, J. (ed.) Computational Algebra, pp. 263–297. Pergamon, Oxford (1970)

    Google Scholar 

  38. Leisenring, A.: Mathematical Logic and Hilbert’s ε-symbol. MacDonald, London (1969)

    Google Scholar 

  39. Lindström, S., Segerberg, K.: Modal logic and philosophy. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.) Handbook of Modal Logics, pp. 1149–1214. Elsevier, Amsterdam (2006)

    Google Scholar 

  40. Mints, G.: Resolution calculi for modal logics. Am. Math. Soc. Transl. 143, 1–14 (1989)

    Google Scholar 

  41. Mints, G.: Gentzen-type systems and resolution rules, part 1: propositional logic. In: Proceedings of COLOG-88, Tallin. Lecture Notes in Computer Science, vol. 417, pp. 198–231. Springer, Berlin (1990)

    Google Scholar 

  42. Nalon, C., Dixon, C.: Clausal resolution for normal modal logics. J. Algorithms 62, 117–134 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  43. Nieuwenhuis, R., Rubio, A.: Paramodulation-based theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. 1, chap. 7, pp. 371–443. Elsevier, Amsterdam (2001)

    Chapter  Google Scholar 

  44. Ohlbach, H.: A resolution calculus for modal logics. Ph.D. thesis, Universität Kaiserslautern (1988)

  45. Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: IJCAR ’01: Proceedings of the First International Joint Conference on Automated Reasoning, pp. 376–380. Springer, Berlin (2001)

    Google Scholar 

  46. Robinson, A., Voronkov, A. (eds.): Handbook of Automated Reasoning. Elsevier, Amsterdam (2001)

    MATH  Google Scholar 

  47. Robinson, J.: A machine-oriented logic based on the resolution principle. J. ACM 12(1), 23–41 (1965)

    Article  MATH  Google Scholar 

  48. Schmidt, R.: Resolution is a decision procedure for many propositional modal logics. In: Advances in Modal Logic, vol. 1, pp. 189–208. CSLI, Stanford (1998)

    Google Scholar 

  49. Schmidt, R.: Decidability by resolution for propositional modal logics. J. Autom. Reason. 22(4), 379–396 (1999)

    Article  MATH  Google Scholar 

  50. Schmidt, R., Hustadt, U.: Mechanised reasoning and model generation for extended modal logics. In: de Swart, H., Orlowska, E., Schmidt, G., Roubens, M. (eds.) Theory and Applications of Relational Structures and Knowledge Instruments. Lecture Notes in Computer Science, vol. 2929, pp. 38–67. Springer, Berlin (2003)

    Chapter  Google Scholar 

  51. Vardi, M.: Why is modal logic so robustly decidable? In: DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 31, pp. 149–184. AMS, Providence (1997)

    Google Scholar 

  52. Voronkov, A.: Algorithms, datastructures, and other issues in efficient automated deduction. In: Proceedings of IJCAR 2001. LNAI, vol. 2083, pp. 13–28 (2001)

  53. Weidenbach, C.: System description: SPASS version 1.0.0. In: CADE-16: Proceedings of the 16th International Conference on Automated Deduction, pp. 378–382. Springer, Berlin (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Areces.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Areces, C., Gorín, D. Resolution with Order and Selection for Hybrid Logics. J Autom Reasoning 46, 1–42 (2011). https://doi.org/10.1007/s10817-010-9167-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-010-9167-0

Keywords

Navigation