Skip to main content
Log in

On Protocols for the Automated Discovery of Theorems in Elementary Geometry

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

In this paper we consider the problem of dealing automatically with arbitrary geometric statements (including, in particular, those that are generally false) aiming to find complementary hypotheses for the statements to become true. Our approach proceeds within the framework of computational algebraic geometry. First we argue and propose a plausible protocol for automatic discovery, and then we present some algorithmic criteria, as well as the meaning (regarding the algebraic geometry of the varieties involved in the given statement), for the protocol success/failure. A detailed collection of examples in also included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bazzotti, L., Dalzotto, G., Robbiano, L.: Remarks on geometric theorem proving. In: Automated Deduction in Geometry, Zurich, 2000. Lecture Notes in Comput. Sci. vol. 2061, pp. 104–128. Springer, Berlin (2001)

    Chapter  Google Scholar 

  2. Bazzotti, L., Dalzotto, G.: Geometrical theorem-proving, a supported CoCoA package. http://cocoa.dima.unige.it/download/doc/GUI_help/partGeometricalTheoremProving.html

  3. Beltrán, C., Dalzotto G., Recio, T.: The moment of truth in automatic theorem proving in elementary geometry. In: Botana, F., Roanes-Lozano, E. (eds.) Proceedings ADG 2006 (Extended Abstracts), Universidad de Vigo (2006)

  4. Botana, F., Recio, T.: Towards solving the dynamic geometry bottleneck via a symbolic approach. In: Proceedings ADG (Automatic Deduction in Geometry) 2004. Lec. Not. Artificial Intelligence LNAI vol. 3763, pp. 761–771. Springer, New York (2005)

    Google Scholar 

  5. Botana, F.: Bringing more intelligence to dynamic geometry by using symbolic computation. In: Li, S., Wang, D., Zhang, J.-Z. (eds.) Symbolic Computation and Education, pp. 136–150. World Scientific, Singapore (2007)

    Google Scholar 

  6. Bulmer, M., Fearnley-Sander, D., Stokes, T.: The kinds of truth of geometric theorems. In: Automated Deduction in Geometry, Zurich, 2000. Lecture Notes in Comput. Sci., vol. 2061, pp. 129–142. Springer, Berlin (2001)

    Chapter  Google Scholar 

  7. Chen, X.F., Li, P., Lin, L., Wang, D.K.: Proving geometric theorems by partitioned-parametric Groebner bases. In: Automated Deduction in Geometry. LNAI, vol. 3763, pp. 34–43. Springer, New York (2006)

    Chapter  Google Scholar 

  8. Chou, S.-C.: Proving elementary geometry theorems using Wu’s algorithm. In: Contemporary Mathematics, vol. 29, pp. 243–286. Automated Theorem Proving: After 25 Years. American Mathematical Society, Providence (1984)

    Google Scholar 

  9. Chou, S.C.: A method for mechanical derivation of formulas in elementary geometry. J. Autom. Reason. 3, 291–299 (1987)

    Article  MATH  Google Scholar 

  10. Chou, S.-C.: Mechanical geometry theorem proving. In: Mathematics and its Applications. D. Reidel, Dordrecht (1988)

    Google Scholar 

  11. Chou, S.-C., Gao, X.-S.: Methods for mechanical geometry formula deriving. In: Proceedings of International Symposium on Symbolic and Algebraic Computation, pp. 265–270. ACM, New York (1990)

    Chapter  Google Scholar 

  12. Capani, A., Niesi, G., Robbiano, L.: CoCoA, a system for doing computations in commutative algebra. The version 4.6 is available at the web site http://cocoa.dima.unige.it

  13. Conti, P., Traverso, C.: A case of automatic theorem proving in Euclidean geometry: the Maclane 83 theorem. In: Applied Algebra, Algebraic Algorithms and Error-Correcting Codes (Paris, 1995). Lecture Notes in Comput. Sci., vol. 948, pp. 183–193. Springer, Berlin (1995)

    Google Scholar 

  14. Conti, P., Traverso, C.: Algebraic and semialgebraic proofs: methods and paradoxes. In: Automated Deduction in Geometry (Zurich, 2000). Lecture Notes in Comput. Sci., vol. 2061, pp. 83–103. Springer, Berlin (2001)

    Chapter  Google Scholar 

  15. Kapur, D.: Wu’s method and its application to perspective viewing. In: Kapur, D., Mundy, J.L. (eds.) Geometric Reasoning. MIT, Cambridge (1989)

    Google Scholar 

  16. Koepf, W.: Gröbner bases and triangles. Int. J. Comp. Algebra Math. Educ. 4(4), 371–386 (1998)

    Google Scholar 

  17. Kreuzer, M., Robbiano, L.: Computational Commutative Algebra 1. Springer, New York (2000)

    Google Scholar 

  18. Montes, A., Recio, T.: Automatic discovery of geometry theorems using minimal canonical comprehensive Groebner systems. In: Botana, F., Recio, T. (eds.) Automated Deduction in Geometry. LNAI (Lect. Notes Artificial Intelligence), vol. 4869, pp. 113–139. Springer, New York (2007)

    Chapter  Google Scholar 

  19. Recio, T.: Cálculo Simbólico y Geométrico. Editorial Síntesis. Madrid (1998)

    Google Scholar 

  20. Recio, T., Sterk, H., Pilar Vélez, M.: Automatic geometry theorem proving. In: Cohen, A., Cuypers, H., Sterk, H. (eds.) Some Tapas of Computer Algebra (Algorithms and Computation in Mathematics, vol. 4). Springer, New York (1999)

    Google Scholar 

  21. Recio, T., Pilar Vélez, M.: Automatic discovery of theorems in elementary geometry. J. Autom. Reason. 23, 63–82 (1999)

    Article  MATH  Google Scholar 

  22. Recio, T., Botana, F.: Where the truth lies (in automatic theorem proving in elementary geometry). In: Proceedings ICCSA (International Conference on Computational Science and its Applications) 2004. Lec. Not. Com. Sci., vol. 3044, pp. 761–771. Springer, New York (2004)

    Google Scholar 

  23. Richard, P.: Raisonnement et stratégies de preuve dans l’enseignement des mathématiques. Peter Lang Editorial, Berne (2004)

    Google Scholar 

  24. Wang, D.: A new theorem discovered by computer prover. J. Geom. 36, 173–182 (1989) (preprint 1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Wang, D.: On Wu’s method for proving constructive geometric theorems. In: Proceedings of the 11th International Joint Conference on Artificial Intelligence (IJCAI-89), Detroit, USA, 20–25 August 1989, pp. 419–424. Morgan Kaufmann, Los Altos (1989)

    Google Scholar 

  26. Wang, D.: Gröbner bases applied to geometric theorem proving and discovering. In: Buchberger, B., Winkler, F. (eds.) Gröbner Bases and Applications, London Mathematical Society Lecture Notes Series, vol. 251, pp. 281–301. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  27. Wang, D., Zhi, L.: Algebraic factorization applied to geometric problems, In: Proceedings of the Third Asian Symposium on Computer Mathematics (ASCM ’98), pp. 23–36. Lanzhou University Press, Lanzhou (1998)

    Google Scholar 

  28. Wang, D.: Elimination Practice: Software Tools and Applications. Imperial College Press, London (2004)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Recio.

Additional information

Last author supported by grant “Algoritmos en Geometría Algebraica de Curvas y Superficies” (MTM2008-04699-C03-03) from the Spanish MICINN.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dalzotto, G., Recio, T. On Protocols for the Automated Discovery of Theorems in Elementary Geometry. J Autom Reasoning 43, 203–236 (2009). https://doi.org/10.1007/s10817-009-9133-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-009-9133-x

Keywords

Navigation