Skip to main content
Log in

Axiomatizing the Skew Boolean Propositional Calculus

  • Published:
Journal of Automated Reasoning Aims and scope Submit manuscript

Abstract

The skew Boolean propositional calculus (\({SBPC}\)) is a generalization of the classical propositional calculus that arises naturally in the study of certain well-known deductive systems. In this article, we consider a candidate presentation of \({SBPC}\) and prove it constitutes a Hilbert-style axiomatization. The problem reduces to establishing that the logic presented by the candidate axiomatization is algebraizable in the sense of Blok and Pigozzi. In turn, this process is equivalent to verifying four particular formulas are derivable from the candidate presentation. Automated deduction methods played a central role in proving these four theorems. In particular, our approach relied heavily on the method of proof sketches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baaz, M.: Infinite-valued Gödel logic with 0-1-projections and relativisations. In: Hájek, Petr (ed.) Gödel’96: Logical Foundations of Mathematics, Computer Science, and Physics, vol. 6 of Lecture Notes in Logic, pp. 23–33. Springer, Heidelberg New York (1996)

    Google Scholar 

  2. Bignall, R.J.: A non-commutative multiple-valued logic. In: Miller, D.M. (ed.) Proceedings of the Twenty-first International Symposium on Multiple-Valued Logic, pp. 49–54. IEEE Computer Society, Los Alamitos, CA (1991)

    Chapter  Google Scholar 

  3. Bignall, R.J., Spinks, M., Veroff, R.: On the assertional logics of the generic pointed discriminator and generic pointed fixedpoint discriminator varieties. Manuscript (2004)

  4. Blok, W.J., Pigozzi, D.: Algebraisable logics. Mem. Am. Math. Soc. 77(396) (1989)

  5. Blok, W.J., Pigozzi, D.: Abstract algebraic logic and the deduction theorem. Bull. Symb. Log., to appear

  6. Burris, S., Sankappanavar, H.P.: A Course in Universal Algebra. Number 78 in Graduate Texts in Mathematics. Springer, Berlin Heidelberg New York (1981)

    Google Scholar 

  7. Czelakowski, J., Pigozzi, D.: Fregean logics. Ann. Pure Appl. Logic 127, 17–76 (2004)

    Article  MathSciNet  Google Scholar 

  8. Font, J.M., Rius, M.: An abstract algebraic logic approach to tetravalent modal logics. J. Symb. Log. 65, 481–518 (2000)

    Article  MathSciNet  Google Scholar 

  9. Hájek, P.: Metamathematics of Fuzzy Logic, vol. 4 of Trends in Logic. Kluwer, Dordercht (1998)

    Google Scholar 

  10. Hillenbrand, T., et al.: Waldmeister. http://www.waldmeister.org

  11. Humberstone, L.: An intriguing logic with two implicational connectives. Notre Dame J. Form. Log. 41, 1–41 (2000)

    Article  MathSciNet  Google Scholar 

  12. Humberstone, L.: Identical twins, deduction theorems and pattern functions: Exploring the implicative \({BCSK}\) fragment of \(\mathbf{S5}\). J. Philos. Logic, to appear

  13. Loureiro, I.: Principal congruences of tetravalent modal algebras. Notre Dame J. Form. Log. 26, 76–80 (1985)

    Article  MathSciNet  Google Scholar 

  14. McCharen, J., Overbeek, R., Wos, L.: Complexity and related enhancements for automated theorem-proving programs. Comput. Math. Appl. 2, 1–16 (1976)

    Google Scholar 

  15. McCune, W.: OTTER 3.0 Reference Manual and Guide, Technical Report ANL-94/6, Argonne National Laboratory, Argonne, Illinois (1994)

  16. McCune, W., Padmanabhan, R., Rose, M., Veroff, R.: Automated discovery of single axioms for ortholattices. Algebra Univers. 52(4), 541–549 (2005)

    Article  MathSciNet  Google Scholar 

  17. McCune, W.: Prover9. http://www.mcs.anl.gov/~mccune/prover9/

  18. Rasiowa, H.: An Algebraic Approach to Non-Classical Logics. Number 78 in Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam (1974)

    Google Scholar 

  19. Spinks, M.: A non-classical extension of classical implicative propositional logic. Bull. Symb. Log. 6, 255 (2000). (Presented at the Austral. Assoc. Logic Annual Conference, Melbourne, July 1999.)

    Google Scholar 

  20. Spinks, M.: On BCSK logic. Bull. Symb. Log. 9, 264 (2003). (Presented at the Austral. Assoc. Logic Annual Conference, Canberra, Dec. 2002.)

    Google Scholar 

  21. Veroff, R.: Using hints to increase the effectiveness of an automated reasoning program: Case studies. J. Autom. Reason. 16(3), 223–239 (1996)

    Article  MathSciNet  Google Scholar 

  22. Veroff, R.: Solving open questions and other challenge problems using proof sketches. J. Autom. Reason. 27(2), 157–174 (2001)

    Article  MathSciNet  Google Scholar 

  23. Veroff, R.: A shortest 2-basis for Boolean algebra in terms of the Sheffer stroke. J. Autom. Reason. 31(1), 1–9 (2003)

    Article  MathSciNet  Google Scholar 

  24. Vychodil, V., Chajda, I.: A note on residuated lattices with globalization. Int. J. Pure Appl. Math., 27(3), 299–303 (2006)

    MathSciNet  Google Scholar 

  25. Wos, L.: Milestones for automated reasoning. Int. J. Artif. Intell. 15(1), 3–19 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Veroff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veroff, R., Spinks, M. Axiomatizing the Skew Boolean Propositional Calculus. J Autom Reasoning 37, 3–20 (2006). https://doi.org/10.1007/s10817-006-9029-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10817-006-9029-y

Key words

Navigation