Skip to main content
Log in

Integrated Geophysical Techniques for the Archaeological Investigation of LbDt-1, a Paleo-Inuit Lithic Quarry Site in the Interior of Southern Baffin Island, Nunavut, Canada

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

In 2015, we mapped surface and near-surface physical properties of a Paleo-Inuit lithic quarry site, LbDt-1, located in the interior of southern Baffin Island, Nunavut, Canada using a multi-method approach. The survey site is characterised by a dense chert flake deposit. The purpose of the survey was to document this survey site’s surface features using three-dimensional laser scanning and to investigate the utility of active remote sensing and geophysical methodologies at prehistoric lithic quarry sites. Manual and automated data reduction, interpretation and inversion methods were applied across each dataset to isolate the surface and subsurface distribution of flakes. Laser scanning results demonstrate a remarkable dispersal of surface chert flakes confined to a general area of the geophysical survey. To define the base of the lithic deposit layer, a combination of enhanced radar reflections and two-layer inversion models of magnetic responses obtained using electromagnetic measurements was used. Radar results suggest the deposit has a thickness of around 10–20 cm and indicate that there are no additional parts of the deposit masked by soil in this area. The magnetic susceptibility data define an upper layer of ~ 20 cm thickness and susceptibility (0.004–0.008 SI) overlying a less magnetic (< 0.004 SI) lower layer, with the spatial variations in the upper layer suggesting debitage and gravel deposits have lower magnetisation than the topsoil at the site. Overall, this study demonstrates the capacity of remote sensing and geophysical methods to non-invasively investigate some prehistoric activities without the need for full-scale excavation and the collection of large material assemblage characteristic of lithic quarry sites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Andrefsky, W. (2009). The analysis of stone tool procurement, production, and maintenance. Journal of Archaeological Research, 17(1), 65–103.

    Article  Google Scholar 

  • Andrews, B. W., Murtha, T. M., & Scheetz, B. (2004). Approaching the Hatch Jasper quarry from a technological perspective: a study of prehistoric stone tool production in Central Pennsylvania. Midcontinental Journal of Archaeology, 29(1), 63–101.

    Article  Google Scholar 

  • Annan, A. P. (2005). Ground-penetrating radar. In D. K. Butler (Ed.), Near-surface geophysics (pp. 357–438). Society of Exploration Geophysicists.

  • Bamforth, D. B. (2006). The Windy Ridge quartzite quarry: hunter-gatherer mining and hunter-gatherer land use on the North American continental divide. World Archaeology, 38(3), 511–527.

    Article  Google Scholar 

  • Beamish, D. (2011). Low induction number, ground conductivity meters: a correction procedure in the absence of magnetic effects. Journal of Applied Geophysics, 75(2), 244–253.

    Article  Google Scholar 

  • Bellian, J. A., Kerans, C., & Jennette, D. C. (2005). Digital outcrop models: applications of terrestrial scanning LiDAR technology in stratigraphic modeling. Journal of Sedimentary Research, 75(2), 166–176.

    Article  Google Scholar 

  • Bonsall, J., Fry, R., Gaffney, C., Armit, I., Beck, A., & Gaffney, V. (2013). Assessment of the CMD mini-explorer, a new low-frequency multi-coil electromagnetic device, for archaeological investigations. Archaeological Prospection, 20(3), 219–231. https://doi.org/10.1002/arp.1458.

    Article  Google Scholar 

  • Brosten, T. R., Bradford, J. H., McNamara, J. P., Gooseff, M. N., Zarnetske, J. P., Bowden, W. B., & Johnston, M. E. (2009). Estimating 3D variation in active-layer thickness beneath Arctic streams using ground-penetrating radar. Journal of Hydrology, 373(3–4), 479–486.

    Article  Google Scholar 

  • Brumbach, H. J. (1987). A quarry/workshop and processing station on the Hudson River in Pleasantdale, New York. Archaeology of Eastern North America, 15, 59–83.

    Google Scholar 

  • Burke, A. L. (2007). Quarry source areas and the organization of stone tool technology: a view from Quebec. Archaeology of Eastern North America, 35, 63–80.

    Google Scholar 

  • Byrd, B. F., Young, D. C., & McGuire, K. R. (2009). Pavement, quarries, gypsum period residential stabiltity, and trans-Holocene settlement systems of the Mohave Desert: a case study at Fort Irwin. Journal of California and Great Basin anthropology, 29(2), 121–144.

    Google Scholar 

  • Campbell, R. (2016). Experimental approach to the resolution and detection limit of the GSSI SIR3000 GPR system with a 400 MHz antenna in a scattering and non-scattering medium. Unpublished report to Dept. Geological Sciences, University of Manitoba, 32 pp.

  • Conyers, L. B. (2015). Analysis and interpretation of GPR datasets for integrated archaeological mapping. Near Surface Geophysics, 13(6), 645–651.

    Article  Google Scholar 

  • Conyers, L. B. (2016). Ground-penetrating radar for geoarchaeology. Wiley-Blackwell.

  • Dafflon, B., Hubbard, S. S., Ulrich, C., & Peterson, J. (2013). Electrical conductivity imaging of active layer and permafrost in an Arctic ecosystem, through advanced inversion of electromagnetic induction data. Vadose Zone Journal, 12(4). https://doi.org/10.2136/vzj2012.0161.

  • Dalan, R. A. (2006). Magnetic susceptibility. In J. K. Johnson (Ed.), Remote sensing in archaeology: an explicitly North American perspective (pp. 161–203). The University of Alabama Press: Tuscaloosa.

    Google Scholar 

  • Dallimore, S. R., & Davis, J. L. (1992). Ground penetrating radar investigations of massive ground ice. In: J. Pilon (ed.) Ground penetrating radar (pp. 41–48), Geological Survey of Canada, Paper 90(4).

  • Ericson, J. E. (1984). Towards the analysis of lithic production systems. In J. E. Ericson & B. A. Purdy (Eds.), Prehistoric quarries and lithic production. New directions in archaeology (pp. 1–10). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Erwin, J. C. (2010). Dorset Palaeoeskimo quarrying techniques and the production of little pots at Fleur de Lys, Newfoundland. In M. Brewer-LaPorta, A. Burke, & D. Field (Eds.), Ancient mines and quarries: a trans-Atlantic perspective (pp. 56–66). Oxbow Books: Oxford.

    Google Scholar 

  • Evans, M., & Heller, F. (2003). Environmental magnetism: principles and applications of enviromagnetics. San Diego, USA: Elsevier Science.

    Google Scholar 

  • Everett, M. E., & Meju, M. A. (2005). Near-surface controlled-source electromagnetic induction: background and recent advances. In Y. Rubin & S. S. Hubbard (Eds.), Hydrogeophysics (pp. 157–183). Springer: Dordrecht, the Netherlands.

    Chapter  Google Scholar 

  • Fitterman, D. V., & Labson, V. F. (2005). Electromagnetic induction methods for environmental problems. In D. K. Butler (Ed.), Near-surface geophysics (pp. 301–355). Society of Exploration Geophysicists.

  • Gacitúa, G., Tamstorf, M. P., Kristiansen, S. M., & Uribe, J. A. (2012). Estimations of moisture content in the active layer in an Arctic ecosystem by using ground-penetrating radar profiling. Journal of Applied Geophysics, 79, 100–106.

    Article  Google Scholar 

  • Goodyear, A. C., & Charles, T. (1984). An archaeological survey of chert quarries in western Allendale County, South Carolina. Research Manuscript Series, 187.

  • Gramly, R. M. (1978). Lithic source areas in Northern Labrador. Arctic Anthropology, 15, 36–47.

    Google Scholar 

  • Grote, K., Crist, T., & Nickel, C. (2010). Experimental estimation of the GPR groundwave sampling depth. Water Resources Research, 46(10).

  • Güth, A. (2012). Using 3D scanning in the investigation of Upper Palaeolithic engravings: first results of a pilot study. Journal of Archaeological Science, 39(10), 3105–3114.

    Article  Google Scholar 

  • Harris, S. A. (1982). Identification of permafrost zones using selected permafrost landforms. In: Proceedings of the fourth annual Canadian permafrost conference, 49–58.

  • Hinkel, K. M., Doolittle, J. A., Bockheim, J. G., Nelson, F. E., Paetzold, R., Kimble, J. M., & Travis, R. (2001). Detection of subsurface permafrost features with ground-penetrating radar, Barrow, Alaska. Permafrost and Periglacial Processes, 12(2), 179–190.

    Article  Google Scholar 

  • Huang, H., & Fraser, D. C. (2003). Inversion of helicopter electromagnetic data to a magnetic conductive layered earth. Geophysics, 68(4), 1211–1223.

    Article  Google Scholar 

  • Huang, H., Won, I. J., & San Filipo, B. (2003). Detecting buried nonmetal objects using soil magnetic susceptibility measurements. AeroSense, 2003, 1181–1188.

  • Hull, S., Fayek, M., Mathien, F. J., Shelley, P., & Durand, K. R. (2008). A new approach to determining the geological provenance of turquoise artifacts using hydrogen and copper stable isotopes. Journal of Archaeological Science, 35(5), 1355–1369.

    Article  Google Scholar 

  • Isenburg, M. (2015). LAStools efficient tools for LiDAR processing. (Version 1.3). Retrieved from http://lastools.org.

  • Kessler, R. A., Beck, C., & Jones, G. T. (2009). Trash: The Structure of Great Basin Palaeoarchaic Debitage Assemblages in Western North America. In B. Adams & B. S. Blades (Eds.), Lithic Materials and Paleolithic Societies (pp. 144–159). New York: Wiley-Blackwell.

    Chapter  Google Scholar 

  • Kneisel, C., Hauck, C., Fortier, R., & Moorman, B. (2008). Advances in geophysical methods for permafrost investigations. Permafrost and Periglacial Processes, 19(2), 157–178.

    Article  Google Scholar 

  • Knight, R. J., & Nur, A. (1987). The dielectric constant of sandstones, 60 kHz to 4 MHz. Geophysics, 52(5), 644–654.

    Article  Google Scholar 

  • Landry, D. B., Ferguson, I. J., Milne, S. B., & Park, R. W. (2015). Combined geophysical approach in a complex Arctic archaeological environment: A case study from the LdFa-1 site, southern Baffin Island, Nunavut. Archaeological Prospection, 22(3), 157–170.

    Article  Google Scholar 

  • Landry, D. B., Milne, S. B., Park, R. W., Ferguson, I. J., & Fayek, M. (2016). Manual point cloud classification and extraction for hunter-gatherer feature investigation: a test case from two low Arctic Paleo-Inuit sites. Open Archaeology, 2(1), 232–242.

    Article  Google Scholar 

  • Larsen, B. P., Holdaway, S. J., Fanning, P. C., Mackrell, T., & Shiner, J. I. (2017). Shape and an outcome of formation history: Terrestrial laser scanning of shell mounds from far north Queensland, Australia. Quaternary International, 427(A), 5–12.

    Article  Google Scholar 

  • Lazenby, M. E. C. (1980). Prehistoric Sources of Chert in Northern Labrador: Field Work and Preliminary Analyses. Arctic, 33(3), 628–645.

    Article  Google Scholar 

  • McNeill, J.D. (1980). Electromagnetic terrain conductivity measurement at low induction numbers. Tech. Note TN-6. Geonics Ltd., Mississauga, ON.

  • McNeill J.D. (2012) Archaeological mapping using the Geonics EM38B to map terrain magnetic susceptibility (with selected case histories). Tech. Note TN-35, Geonics Ltd., Mississauga, ON.

  • McNeill, J & Bosnar M. (1999). Application of ‘dipole–dipole’ electromagnetic systems for geological depth sounding. Tech. Note TN-31, Geonics limited: Mississauga, ON.

  • Mester, A., van der Kruk, J., Zimmermann, E., & Vereecken, H. (2011). Quantitative two-layer conductivity inversion of multi-configuration electromagnetic induction measurements. Vadose Zone Journal, 10(4), 1319–1330. https://doi.org/10.2136/vzj2011.0035.

    Article  Google Scholar 

  • Milne, S. B. (2013). Chert sourcing and Palaeo-Eskimo stone tool technology. Report on work conducted under Nunavut Archaeological Permit No. 2013-02A. Manuscript on file with the Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut.

  • Milne, S. B. (2015). Chert sourcing and Palaeo-Eskimo stone tool technology: permit report on work conducted under Nunavut archaeological permit no. 2015-21A. Department of Culture, Language, Elders and Youth, Government of Nunavut, Igloolik, Nunavut.

  • Milne, S. B., Park, R. W., Hamilton, A. C., & Fayek, M. J. (2011). Chert sourcing and Palaeo-Eskimo raw material use in the interior of southern Baffin Island, Arctic Canada. Canadian Journal of Archaeology, 35(1), 117–142.

    Google Scholar 

  • Minchak, S. A. (2010). A microwear study of Clovis blades from the Gault Site, Bell County, Texas (Doctoral dissertation, Texas A & M University).

  • Moorman, B. J., Robinson, S. D., & Burgess, M. M. (2003). Imaging periglacial conditions with ground-penetrating radar. Permafrost and Periglacial Processes, 14(4), 319–329.

    Article  Google Scholar 

  • Parish, R. M. (2013). The application of reflectance spectroscopy to chert provenance of Mississippian symbolic weaponry. Doctoral dissertation, University of Memphis.

  • Pilon, J.A., Allard, M., & Séguin, M.K. (1992). Ground probing radar in the investigation of permafrost and subsurface characteristics of surticial deposits in Kangiqsualujjuaq, Northern Quebec. In: J. Pilon (ed.) Ground penetrating radar (pp. 165–175), Geological Survey of Canada, Paper 90(4).

  • Robinson, D. A., Lebron, I., Lesch, S. M., & Shouse, P. (2004). Minimizing drift in electrical conductivity measurements in high temperature environments using the EM-38. Soil Science Society of America Journal, 68(2), 339–345.

    Article  Google Scholar 

  • Romero, B. E., & Bray, T. L. (2014). Analytical applications of fine-scale terrestrial lidar at the imperial Inca site of Caranqui, northern highland Ecuador. World Archaeology, 46(1), 25–42.

    Article  Google Scholar 

  • Schwamborn, G., Wagner, D., & Hubberten, H. W. (2008). The use of GPR to detect active layers in young periglacial terrain of Livingston Island, Maritime Antarctica. Near Surface Geophysics, 6(5), 331–336.

    Article  Google Scholar 

  • Snegirev, A. M., Velikin, S. A., Istratov, V. A., Kuchmin, A. O., Skvortsov, A. G. and Frolov, A. D. (2003). Geophysical monitoring in permafrost areas. In Permafrost: 8th international conference on permafrost, Zurich, pp. 1079–1084.

  • Stenton, D. R., & Park, R. W. (1998). Ancient Harpoon Heads of Nunavut: An Illustrated Guide [in English and Inuktitut]. Parks Canada, Department of Canadian Heritage, Government of Canada, Iqaluit. 108 pp.

  • Tarnocai, C., & Bockheim, J. G. (2011). Cryosolic soils of Canada: genesis, distribution, and classification. Canadian Journal of Soil Science, 91(5), 749–762.

    Article  Google Scholar 

  • Tabbagh, A. (1986). Applications and advantages of the Slingram electromagnetic method for archaeological prospecting. Geophysics, 51(3), 576–584.

    Article  Google Scholar 

  • ten Bruggencate, R. E., Milne, S. B., Fayek, M., Park, R. W., & Stenton, D. R. (2015). Characterization of chert artifacts and two newly identified chert quarries on southern Baffin Island. Lithic Technology, 40(3), 189–198.

    Article  Google Scholar 

  • ten Bruggencate, R. E., Milne, S. B., Fayek, M., Park, R. W., Stenton, D. R., & Hamilton, A. C. (2016a). Characterizing southern Baffin Island chert: a cautionary tale for provenance research. Journal of Archaeological Science: Reports. https://doi.org/10.1016/j.jasrep.2016.03.016.

  • ten Bruggencate, R. E., Stup, J. P., Milne, S. B., Stenton, D. R., Park, R. W., & Fayek, M. (2016b). A human-centered GIS approach to modeling mobility on Southern Baffin Island, Nunavut, Canada. Journal of Field Archaeology, 41(6), 684–698.

    Article  Google Scholar 

  • Theune, U., Rokosh, D., Sacchi, M. D., & Schmitt, D. R. (2006). Mapping fractures with GPR: A case study from Turtle Mountain. Geophysics, 71(5), B139–B150.

    Article  Google Scholar 

  • Tripcevich, N., & Contreras, D. A. (2013). Archaeological approaches to obsidian quarries: investigations at the Quispisisa source. In N. Tripcevich & K. J. Vaughn (Eds.), Mining and quarrying in the Ancient Andes, interdisciplinary contributions to archaeology. New York: Springer Science+Business Media.

    Chapter  Google Scholar 

  • Urban, T. M., Anderson, D. D., & Anderson, W. W. (2012). Multimethod geophysical investigations at an Inupiaq village site in Kobuk Valley, Alaska. The Leading Edge, 31(8), 950–956.

    Article  Google Scholar 

  • Urban, T. M., Rasic, J. T., Alix, C., Anderson, D. D., Manning, S. W., Mason, O. K., Tremayne, A. H., & Wolff, C. B. (2016). Frozen: the potential and pitfalls of ground-penetrating radar for archaeology in the Alaskan Arctic. Remote Sensing, 8(12), 1007.

    Article  Google Scholar 

  • Valls, A., García, F., Ramírez, M., & Benlloch, J. (2016). A combined use of GPR data with historical archives for identifying pavement construction periods of Valencian Silos (16th century, Spain). IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(1), 98–107.

    Article  Google Scholar 

  • Viberg, A., Trinks, I., & Lidén, K. (2009). Archaeological prospection in the Swedish Mountain tundra region. ArchéoSciences 33, Presses Université de Rennes, 33 (suppl.), 167, 169.

  • Vickers, K. J. (2011). Quaternary geology of Bluegoose Prairie, Baffin Island, Nunavut. M.Sc. thesis, Simon Fraser University, Canada.

  • Wilke, P. J., & Schroth, A. B. (1989). Lithic raw material prospects in the Mojave Desert, California. Journal of California and Great Basin anthropology, 11(2), 146–174.

    Google Scholar 

  • Wolff, C. B., & Urban, T. M. (2013). Geophysical analysis at the old whaling site, Cape Krusenstern, Alaska, reveals the possible impact of permafrost loss on archaeological interpretation. Polar Research, 32(1).

  • Yilmaz, O. (1987). Seismic data processing. Tulsa: Society of Exploration Geophysicists.

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge contributions to this research from the following people: Douglas Stenton (Department of Culture and Heritage, Government of Nunavut), Reid Campbell (University of Manitoba), Rick Armstrong and Mary Ellen Thomas (Nunavut Research Institute, Iqaluit, NU), L. Conyers and two anonymous reviewers.

Funding

Funding support for this research was generously provided by the Social Sciences and Humanities Research Council of Canada’s Insight Grant Program (No. 435-2012-1176; Milne, Fayek, Park, Stenton), the Canada Foundation for Innovation—John R. Evans Leaders Fund Project (No. 25071; Milne), the Manitoba Research and Innovation Fund (Milne), the Manitoba Heritage Grants Program (No. 12F-H145; Milne), the Social Sciences and Humanities Research Council Doctoral Award (Landry), University of Manitoba Graduate Fellowship (Landry), Northern Scientific Training Program (Landry), the University of Manitoba, Faculty of Graduate Studies SSHRC Graduate Enhancement of Tri-Council Stipends Scholarship (Landry) and the Polar Continental Shelf Project (Natural Resources Canada, Earth Sciences Sector Project No. 647-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Landry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landry, D.B., Ferguson, I.J., Milne, B. et al. Integrated Geophysical Techniques for the Archaeological Investigation of LbDt-1, a Paleo-Inuit Lithic Quarry Site in the Interior of Southern Baffin Island, Nunavut, Canada. J Archaeol Method Theory 26, 185–216 (2019). https://doi.org/10.1007/s10816-018-9370-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-018-9370-6

Keywords

Navigation