Skip to main content
Log in

Mesh Is More—Using All Geometric Dimensions for the Archaeological Analysis and Interpretative Mapping of 3D Surfaces

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

In various disciplines, particularly those that utilise techniques developed in the geosciences, the display, analysis and interpretation of three-dimensional (3D) data is very important. This is also the case in archaeology. Irrespective of a site- or landscape-centred point of focus, archaeology deals with very complex surfaces and always examines traces of past human presence in three geometrical dimensions. Visualising these detailed geometric environments is not that much of an issue anymore; however, interactively interpreting and mapping them is still problematic. Despite the steady increase in technologies to create 3D models, there is still a serious lack of tools that allow for easy interaction with these models in a metrical and coordinate system-aware environment. As a result, most—if not all—interpretation workflows will first downscale 3D data to two-and-a-half-dimensional (2.5D) or 2D data sets, thus effectively discarding up to one geometrical dimension. To enable or enhance the perception of topographic characteristics in these geometrically compromised datasets, various visualisation techniques have been developed to artificially restore and enhance the data that was initially discarded. While these techniques work very well to enhance the remaining pertinent features present in such data sets, data downscaling can nevertheless irrevocably eliminate significant amounts of important archaeological information. Therefore, this paper outlines a new processing and interpretation pipeline for complex archaeological 3D surfaces that do not rely on downscaling of data, while also discussing several 3D-related concepts and issues along the way. More specifically, this article focusses on the generation of intelligently decimated, two-manifold triangular meshes and the subsequent geo-referenced 3D interpretative mapping of these surfaces. Furthermore, all applications can be considered low- and even no-cost, making this a readily implemented processing and interpretation workflow. Additionally, all software packages are easy to learn and flexible enough for implementation in any existing mixed software pipeline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Reference

  • 3D Systems. (2013). Geomagic Studio®. http://support1.geomagic.com/link/portal/5605/5668/ArticleFolder/336/Geomagic-Studio. Accessed 14-Mar-16.

  • 3D Systems. (2015a). Geomagic® Control™. http://www.geomagic.com/en/products/qualify/overview. Accessed 16-Mar-16.

  • 3D Systems. (2015b). Geomagic® Control™ Help and Video Channel: how to compare scan data to a reference using 3D Compare. http://support1.geomagic.com/link/portal/5605/5668/Article/1395/How-to-Compare-Scan-Data-to-a-Reference-using-3D-Compare. Accessed 16-Mar-16.

  • Ahmadabadian, A. H., Robson, S., Boehm, J., Shortis, M., Wenzel, K., & Fritsch, D. (2013). A comparison of dense matching algorithms for scaled surface reconstruction using stereo camera rigs. ISPRS Journal of Photogrammetry and Remote Sensing. doi:10.1016/j.isprsjprs.2013.01.015 .

    Google Scholar 

  • Ainsworth, S., Oswald, A., & Went, D. (2013). Remotely acquired, not remotely sensed: using lidar as a field survey tool. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting archaeological topography: 3D data, visualisation and observation (pp. 206–222) . Oxford and Oakville: Oxbow Books.Occasional publication of the Aerial Archaeology Research Group, Vol. 5

    Google Scholar 

  • ANSI (1985). IEEE standard for binary floating-point arithmetic. Piscataway, NJ, USA: IEEE(754-1985). Accessed 17 March 2016, doi: 10.1109/IEEESTD.1985.82928 .

  • Atangeo Ltd. (2015). A high-quality, ultra-fast polygon reduction tool. http://www.atangeo.com/. Accessed 16-Mar-16.

  • Attene, M., Campen, M., & Kobbelt, L. (2013). Polygon mesh repairing. ACM Computing Surveys. doi:10.1145/2431211.2431214 .

    Google Scholar 

  • Autodesk (2016). Autodesk Meshmixer: free software for making awesome stuff. http://www.meshmixer.com/. Accessed 16-Mar-16.

  • Bærentzen, J. A., Gravesen, J., Anton, F., & Aanæs, H. (2012). Guide to computational geometry processing: foundations, algorithms, and methods. London: Springer.

    Book  Google Scholar 

  • Bektaş, K., Çöltekin, A., & Straumann, R. K. (2012). Survey of true 3D and raster level of detail support in GIS software. In M. F. Buchroithner (Ed.), True-3D in cartography: autosteroscopic and steric visualisation of geodata (1st ed., pp. 43–65) . Berlin: Springer Berlin.Lecture notes in geoinformation and cartography

    Google Scholar 

  • Bennett, R., Welham, K., Hill, R. A., & Ford, A. L. J. (2012). A comparison of visualization techniques for models created from airborne laser scanned data. Archaeological Prospection. doi:10.1002/arp.1414 .

    Google Scholar 

  • Bettio, F., Gobbetti, E., Marton, F., & Pintore, G. (2007). High-quality networked terrain rendering from compressed bitstreams. In Proceedings of the twelfth international conference on 3D web technology (Web3D ‘07). Umbria, Italy, 15–18 APril 2007 (pp. 37–44). New York: ACM, doi:10.1145/1229390.1229396.

  • Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., et al. (2013). Quad-mesh generation and processing: a survey. Computer Graphics Forum. doi:10.1111/cgf.12014 .

    Google Scholar 

  • Bonomi Ponzi, L. (1992). Occupazione del territorio e modelli insediativi nel territorio Plestino e Camerte in età protostorica. In M. Dardari & G. Annibaldi (Eds.), La civiltà Picena nelle Marche. Studi in onore di Giovanni Annibaldi. Ancona, 10–13 luglio 1988 (pp. 204–241). Ripatransone: Maroni.

  • Borgeat, L., Godin, G., Blais, F., Massicotte, P., & Lahanier, C. (2005). GoLD: interactive display of huge colored and textured models. In M. Gross (Ed.), Proceedings of SIGGRAPH 2005: Special Interest Group on Computer Graphics and Interactive Techniques Conference. Los Angeles, CA, USA, 31 July–4 August 2005 (pp. 869–877). New York: ACM, doi: 10.1145/1186822.1073276 .

  • Botsch, M. (2005). High quality surface generation and efficient multiresolution editing based on triangle meshes. PhD thesis. heinisch-Westf ̈alischen Technischen Hochschule Aachen, Aachen. Accessed 14 April 2015.

  • Botsch, M., Kobbelt, L., Pauly, M., Alliez, P., & Lévy, B. (2010). Polygon mesh processing. Natick: A K Peters.

    Book  Google Scholar 

  • Breunig, M., & Zlatanova, S. (2011). 3D geo-database research: retrospective and future directions. Computers & Geosciences. doi:10.1016/j.cageo.2010.04.016 .

    Google Scholar 

  • Breunig, M., Butwilowski, E., Golovko, D., Kuper, P. V., Menninghaus, M., & Thomsen, A. (2013). Advancing DB4GeO. In J. Pouliot, S. Daniel, F. Hubert, & A. Zamyadi (Eds.), Progress and new trends in 3D geoinformation sciences (pp. 193–210) . Heidelberg: Springer. (Lecture Notes in Geoinformation and Cartography)

    Chapter  Google Scholar 

  • Burrough, P. A., & McDonnell, R. A. (1998). Principles of geographical information systems(Spatial information systems and geostatistics. Oxford: Oxford University Press.

    Google Scholar 

  • Campbell, P. B. (2010). High tech on a budget: recording maritime cultural heritage using a Total Station, RhinoPhoto, and Rhinoceros NURBS. In B. Frischer, J. W. Crawford, & D. Koller (Eds.), Making history interactive. Proceedings of the 37th International conference on Computer Applications and Quantitative Methods in Archaeology (CAA). (BAR international series, Vol. 2079) Williamsburg, Virginia, USA, march 22–26, 2009. Oxford: Archaeopress.

  • Challis, K., & Kincey, M. (2013). Immersive visualisation of survey and laser scanning: the case for using computer game engines. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting archaeological topography: 3D data, visualisation and observation (pp. 238–251, Occasional Publication of the Aerial Archaeology Research Group, Vol. 5). Oxford and Oakville: Oxbow Books.

  • Challis, K., Forlin, P., & Kincey, M. (2011). A generic toolkit for the visualization of archaeological features on airborne LiDAR elevation data. Archaeological Prospection. doi:10.1002/arp.421 .

    Google Scholar 

  • Cheng, S.-W., Dey, T. K., & Shewchuk, J. R. (2013). Delaunay mesh generation (Chapman & Hall/CRC computer and information science series). Boca Raton: CRC Press.

    Google Scholar 

  • Childs, C. (2011). Terrain datasets: the top 10 reasons to use them. ArcUser Online, 40–45.

  • Chrisman, N. (2008). Geometric primitives. In K. K. Kemp (Ed.), Encyclopedia of geographic information science (pp. 197–200). Los Angeles: SAGE Publications.

    Google Scholar 

  • Cignoni, P. (2014). MeshLab. http://meshlab.sourceforge.net/. Accessed 16-Mar-16.

  • Cignoni, P., Rocchini, C., & Scopigno, R. (1998). Metro: measuring error on simplified surfaces. Computer Graphics Forum. doi:10.1111/1467-8659.00236 .

    Google Scholar 

  • Çöltekin, A., & Haggrén, H. (2006). Stereo Foveation. The Photogrammetric Journal of Finland, 20(1), 45–53.

    Google Scholar 

  • Danovaro, E., De Floriani, L., Puppo, E., & Samet, H. (2007). Out-of-core multiresolution terrain modeling. In A. Belussi, B. Catania, E. Clementini, & E. Ferrari (Eds.), Spatial data on the web: modeling and management (pp. 43–63). Berlin: Springer.

    Chapter  Google Scholar 

  • de Berg, M., van Kreveld, M., Overmars, M., & Schwarzkopf, O. (1997). Computational geometry: algorithms and applications. Berlin: Springer.

    Book  Google Scholar 

  • De Floriani, L., & Magillo, P. (1993). Computing visibility maps on a digital terrain model. In A. U. Frank (Ed.), Spatial information theory: a theoretical basis for GIS; European conference; proceedings (Lecture notes in computer science, Vol. 716, pp. 248–269) . Berlin: Springer.

  • De Reu, J., Plets, G., Verhoeven, G., De Smedt, P., Bats, M., Cherretté, B., et al. (2013). Towards a three-dimensional cost-effective registration of the archaeological heritage. Journal of Archaeological Science. doi:10.1016/j.jas.2012.08.040 .

    Google Scholar 

  • De Reu, J., De Smedt, P., Herremans, D., Van Meirvenne, M., Laloo, P., & de Clercq, W. (2014). On introducing an image-based 3D reconstruction method in archaeological excavation practice. Journal of Archaeological Science. doi:10.1016/j.jas.2013.08.020 .

    Google Scholar 

  • De Roo, B., Maddens, R., Vanclooster, A., Bourgeois, J., & De Maeyer, P. (2012). From 3D GIS to ArcheoGIS: first steps towards a timeless conceptual model. In Computer applications and quantitative methods in archaeology, 40th International conference, Abstracts. Southampton, UK, 26–30 March 2012.

  • Dell’unto, N. (2014). The use of 3D models for intra-site investigation in archaeology. In F. Remondino & S. Campana (Eds.), 3D modeling in archaeology and cultural heritage: theory and best practices, BAR international series, S2598 (pp. 151–158). London: Archaeopress.

    Google Scholar 

  • Dell’Unto, N., Landeschi, G., Leander Touati, A.-M., Dellepiane, M., Callieri, M., & Ferdani, D. (2016). Experiencing ancient buildings from a 3D GIS perspective: a case drawn from the Swedish Pompeii Project. Journal of Archaeological Method and Theory. doi:10.1007/s10816-014-9226-7 .

    Google Scholar 

  • Derzapf, E., Menzel, N., & Guthe, M. (2010). Parallel view-dependent out-of-core progressive meshes. In Proceedings of the 15th International Workshop on Vision, Modeling and Visualisation (VMW 2010): Eurographics Association.

  • Doneus, M. (2013). Openness as visualization technique for interpretative mapping of airborne Lidar derived digital terrain models. Remote Sensing. doi:10.3390/rs5126427 .

    Google Scholar 

  • Doneus, M., Briese, C., Fera, M., & Janner, M. (2008). Archaeological prospection of forested areas using full-waveform airborne laser scanning. Journal of Archaeological Science. doi:10.1016/j.jas.2007.06.013 .

    Google Scholar 

  • Doneus, M., Verhoeven, G., Fera, M., Briese, C., Kucera, M., & Neubauer, W. (2011). From deposit to point cloud—a study of low-cost computer vision approaches for the straightforward documentation of archaeological excavations. Geoinformatics, 6 (XXIIIrd International CIPA Symposium), 81–88.

  • ESRI (2012). The multipatch geometry type: an Esri® White paper. Redlands. https://www.esri.com/library/whitepapers/pdfs/multipatch-geometry-type.pdf. Accessed 15 April 2016.

  • ESRI (2016a). ArcGIS 10.4 is here! | ArcGIS Blog. ESRI. https://blogs.esri.com/esri/arcgis/2016/02/18/arcgis-10-4-is-here/. Accessed 04-Apr-16.

  • ESRI (2016b). ArcGIS for Desktop. ESRI. http://www.esri.com/software/arcgis/arcgis-for-desktop. Accessed 15 April 2016.

  • Fassi, F., Achille, C., Mandelli, A., Rechichi, F., & Parri, S. (2015). A new idea of BIM system for visualization, web sharing and using huge complex 3d models for facility management. In D. González-Aguilera, F. Remondino, J. Boehm, T. P. Kersten, & T. Fuse (Eds.), Proceedings of 3D–Arch 2015 – 3D Virtual Reconstruction and Visualization of Complex Architectures (ISPRS WG V/4, CIPA). Avila, Spain, 25–27 February 2015 (XL-5/W4, pp. 359–366, ISPRS Archives, XL-5/W4), doi:10.5194/isprsarchives-XL-5-W4-359-2015.

  • Fritsch, D., & Rothermel, M. (2013). Oblique image data processing—potential, experiences and recommendations. In D. Fritsch (Ed.), Photogrammetric week 2013 (pp. 73–88). Stuttgart: Stuttgart: ifp.

    Google Scholar 

  • Gallay, M., Kaňuk, J., Hofierka, J., Hochmuth, Z., & Meneely, J. (2015). Mapping and geomorphometric analysis of 3-D cave surfaces: a case study of the Domica Cave, Slovakia. In J. Jasiewicz, Z. Zwoliński, H. Mitasova, & T. Hengl (Eds.), Geomorphometry for geosciences: Proceedings of the 4th International Conference on Geomorphometry: geomorphometry for natural hazards geomodelling. Poznań (Poland), June 22–26, 2015 (pp. 69–73). Bogucki Wydawnictwo Naukowe: Poznań.

    Google Scholar 

  • Girardeau-Montaut, D. (2016). Cloud Compare: 3D point cloud and mesh processing software. Open Source Project. http://www.danielgm.net/cc/. Accessed 16-Mar-16.

  • Gobbetti, E., & Marton, F. (2004). Layered point clouds: a simple and efficient multiresolution structure for distributing and rendering gigantic point-sampled models. Computers & Graphics. doi:10.1016/j.cag.2004.08.010 .

    Google Scholar 

  • Goesele, M., Curless, B., & Seitz, S. M. (2006). Multi-View Stereo revisited. In Proceedings of the 2006 I.E. Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’06) - Volume 2. New York, NY, USA, 17–22 June 2006 (pp. 2402–2409). Los Alamitos: IEEE Computer Society Press, doi:10.1109/CVPR.2006.199.

  • GOM mbH (2016). GOM Inspect Features. GOM mbH. http://www.gom.com/3d-software/gom-inspect/features.html. Accessed 14-Mar-16.

  • Gomes, A. J. P., Voiculescu, I., Jorge, J., Wyvill, B., & Galbraith, C. (2009). Implicit curves and surfaces: mathematics, data structures and algorithms. Dordrecht: Springer.

    Book  Google Scholar 

  • Goodchild, M. F. (2009). Geographic information systems and science: today and tomorrow. Annals of GIS. doi:10.1080/19475680903250715 .

    Google Scholar 

  • Google Developers (2016). KML documentation introduction. https://developers.google.com/kml/documentation/?csw=1#creating-and-sharing-kml-files. Accessed 18-Mar-16.

  • Gotsman, C., Gumhold, S., & Kobbelt, L. (2002). Simplification and compression of 3D meshes. In A. Iske, E. Quak, & M. S. Floater (Eds.), Tutorials on multiresolution in geometric modelling: summer school lecture notes (pp. 319–361) . Berlin: Springer.Mathematics and Visualization

    Chapter  Google Scholar 

  • Green, J. N. (2004). Maritime archaeology: a technical handbook (2nd ed.). San Diego, London: Elsevier Academic Press.

    Google Scholar 

  • Guennebaud, G., & Gross, M. (2007). Algebraic point set surfaces. In Proceedings of ACM SIGGRAPH 2007. San Diego, CA, USA, 03–04 August 2007 (p. 23): ACM, doi:10.1145/1275808.1276406.

  • Guennebaud, G., Germann, M., & Gross, M. (2008). Dynamic sampling and rendering of algebraic point set surfaces. Computer Graphics Forum. doi:10.1111/j.1467-8659.2008.01163.x .

    Google Scholar 

  • Guidi, G. (2014). Terrestrial optical active sensors—theory and applications. In F. Remondino & S. Campana (Eds.), 3D modeling in archaeology and cultural heritage: theory and best practices (pp. 37–60) . London: Archaeopress.BAR international series, S2598

    Google Scholar 

  • Haala, N. (2013). The landscape of dense image matching algorithms. In D. Fritsch (Ed.), Photogrammetric week 2013. Stuttgart, Germany (pp. 271–284). Stuttgart: ifp.

    Google Scholar 

  • Hengl, T., & Reuter, H. I. (Eds.) (2009). Geomorphometry: concepts, software, applications (Developments in Soil Science, Vol. 33). Amsterdam: Elsevier.

  • Hess, D. R. (2010). Blender foundations: the essential guide to learning blender 2.6. Amsterdam: Focal Press/Elsevier.

    Google Scholar 

  • Hesse, R. (2010). LiDAR-derived local relief models—a new tool for archaeological prospection. Archaeological Prospection. doi:10.1002/arp.374 .

    Google Scholar 

  • Hirschmüller, H. (2008). Stereo processing by semiglobal matching and mutual information. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2007.1166 .

    Google Scholar 

  • Hughes, J. F., Van Dam, A., McGuire, M., Sklar, D. F., Foley, J. D., Feiner, S. K., et al. (2014). Computer graphics: principles and practice. Upper Saddle River: Addison-Wesley.

    Google Scholar 

  • Ilic, S. (2005). Implicit meshes: unifying implicit and explicit surface representations for 3D reconstruction and tracking. Lausanne: PhD. École polytechnique fédérale de Lausanne Accessed 13 November 2014.

    Google Scholar 

  • Iliffe, J., & Lott, R. (2008). Datums and map projections for remote sensing, GIS, and surveying (2nd ed.). Caithness: Whittles Pub.; CRC Press.

    Google Scholar 

  • Imhof, E. (2007). Cartographic relief presentation. Redlands: ESRI Press.

    Google Scholar 

  • Jensen, J. L. R., & Mathews, A. J. (2016). Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sensing. doi:10.3390/rs8010050 .

    Google Scholar 

  • Jordan, G. (2007). Digital terrain analysis in a GIS environment. Concepts and development. In R. J. Peckham & G. Jordan (Eds.), Digital terrain modelling: development and applications in a policy support environment (pp. 1–43) . Berlin: Springer.Lecture Notes in geoinformation and cartography

    Google Scholar 

  • Kahan, W. (1997). Lecture notes on the status of IEEE standard 754 for binary floating-point arithmetic . Berkeley.http://www.cs.berkeley.edu/~wkahan/ieee754status/IEEE754.PDF. Accessed 21 March 2016

  • Kehl, C. (2015). Disseminating large-scale semantic 3D landscape models using open visualisation platforms. European Journal of Geography, 6(2), 51–68.

    Google Scholar 

  • Kennedy, H. (2009). Introduction to 3D data: modeling with ArcGIS 3D analyst and Google earth. Hoboken: John Wiley.

    Book  Google Scholar 

  • Kessler, H., Mathers, S., & Sobisch, H.-G. (2009). The capture and dissemination of integrated 3D geospatial knowledge at the British Geological Survey using GSI3D software and methodology. Computers & Geosciences. doi:10.1016/j.cageo.2008.04.005.

    Google Scholar 

  • Kidner, D. B., & Smith, D. H. (1997). Storage-efficient techniques for representing digital terrain models. In Z. Kemp (Ed.), Selected papers from the Fourth National Conference on GIS research UK (Gisruk) (Innovations in GIS, Vol. 4, pp. 25–41) . London: Taylor & Francis.

  • Kimball, Justin J. L. (2014). 3D delineation. A modernisation of drawing methodology for field archaeology. Master thesis. Lunds Universitet. Accessed 4 October 2014.

  • Kobbelt, L. P., & Botsch, M. (2003). Freeform shape representations for efficient geometry processing. In M.-S. Kim (Ed.), Proceedings of shape modeling international 2003. Seoul, Korea, 12–15 May 2003 (pp. 111–115). IEEE: Los Alamitos. doi:10.1109/SMI.2003.1199607 .

    Google Scholar 

  • Kokalj, Ž., Zakšek, K., & Oštir, K. (2011). Application of sky-view factor for the visualisation of historic landscape features in lidar-derived relief models. Antiquity, 85(327), 263–273.

    Article  Google Scholar 

  • Landeschi, G., Dell’unto, N., Ferdani, D., Lindgren, S., & Leander Touati, A.-M. (2015). Enhanced 3D-GIS: documenting insula V 1 in Pompeii. In F. Giligny, F. Djindjian, L. Costa, P. Moscati, & S. Robert (Eds.), CAA2014: 21st century archaeology: concepts, methods and tools. Proceedings of the 42nd Annual Conference on Computer Applications and Quantitative Methods in Archaeology (pp. 349–360). Oxford: Archaeopress.

    Google Scholar 

  • Landeschi, G., Dell’unto, N., Lundqvist, K., Ferdani, D., Campanaro, D. M., & Leander Touati, A.-M. (2016). 3D-GIS as a platform for visual analysis: investigating a Pompeian house. Journal of Archaeological Science. doi:10.1016/j.jas.2015.11.002 .

    Google Scholar 

  • Larsson, L., Trinks, I., Söderberg, B., Gabler, M., Dell’unto, N., Neubauer, W., et al. (2015). Interdisciplinary archaeological prospection, excavation and 3D documentation exemplified through the investigation of a burial at the Iron Age settlement site of Uppåkra in Sweden. Archaeological Prospection. doi:10.1002/arp.1504.

    Google Scholar 

  • Leberl, F., Irschara, A., Pock, T., Meixner, P., Gruber, M., Scholz, S., et al. (2010). Point clouds: lidar versus 3D vision. Photogrammetric Engineering and Remote Sensing, 76(10), 1123–1134.

    Article  Google Scholar 

  • Loidold, M. (2008). Three-dimensional GIS. In K. K. Kemp (Ed.), Encyclopedia of geographic information science (pp. 470–474). Los Angeles: SAGE Publications.

    Google Scholar 

  • Lollini, D. G. (1979). Il Bronzo Finale nelle Marche. RScPreist, 34(1–2), 179–215.

    Google Scholar 

  • Longley, P., Goodchild, M. F., Maguire, D. J., & Rhind, D. W. (2011). Geographic information systems and science (3rd ed.). Hoboken: Wiley.

    Google Scholar 

  • Losasso, F., & Hoppe, H. (2004). Geometry clipmaps: terrain rendering using nested regular grids. In Los Angeles, USA, 8–12 August, 2004 (pp. 769–776): ACM SIGGRAPH, doi:10.1145/1186562.1015799.

  • Löwner, M.-O. (2013). On problems and benefits of 3D topology on under-specified geometries in geomorphology. In J. Pouliot, S. Daniel, F. Hubert, & A. Zamyadi (Eds.), Progress and new trends in 3D geoinformation sciences (pp. 155–170) . Heidelberg: Springer.Lecture Notes in Geoinformation and Cartography

    Chapter  Google Scholar 

  • Luebke, D. P., Reddy, M., Cohen, J. D., Varshney, A., Watson, B., & Huebner, R. (2002). Level of detail for 3D graphics (Morgan Kaufmann series in computer graphics and geometric modeling). San Francisco: Morgan Kaufmann.

    Google Scholar 

  • Macedonio, G., & Pareschi, M. T. (1991). An algorithm for the triangulation of arbitrarily distributed points: applications to volume estimate and terrain fitting. Computers & Geosciences. doi:10.1016/0098-3004(91)90086-S .

    Google Scholar 

  • Maling, D. H. (1989). Measurements from maps: principles and methods of cartometry. Oxford: Pergamon.

    Google Scholar 

  • Martin, S., & Watson, J.-P. (2011). Non-manifold surface reconstruction from high-dimensional point cloud data. Computational Geometry. doi:10.1016/j.comgeo.2011.05.002 .

    Google Scholar 

  • Mellado, N. (2012). Analysis of 3D objects at multiple scales: application to shape matching. PhD thesis. University of Bordeaux, Bordeaux. http://geometry.cs.ucl.ac.uk/nmellado/research/papers/2012-thesis/thesis.pdf. Accessed 6 October 2014.

  • Miller, G. (1994). Efficient algorithms for local and global accessibility shading. In A. S. Glassner & M. Keeler (Eds.), Proceedings of SIGGRAPH 94: the 21st annual conference on computer graphics and interactive techniques. Orlando, FL, USA, July 24–29, 1994 (pp. 319–326). New York: ACM SIGGRAPH. doi:10.1145/192161.192244 .

    Chapter  Google Scholar 

  • Miller, C. L., & Laflamme, R. A. (1958). The digital terrain model—theory & application. Photogramm Eng (Photogrammetric Engineering), 24, 433–442.

    Google Scholar 

  • Murray, J. D., & VanRyper, W. (1996). Encyclopedia of graphics file formats: the complete reference on CD-ROM with links to internet resources. For PC, Macintosh, and UNIX platforms (2nd ed.). Sebastopol: O’Reilly & Associates.

    Google Scholar 

  • Nadal-Romero, E., Revuelto, J., Errea, P., & López-Moreno, J. I. (2015). The application of terrestrial laser scanner and SfM photogrammetry in measuring erosion and deposition processes in two opposite slopes in a humid badlands area (central Spanish Pyrenees). The Soil. doi:10.5194/soil-1-561-2015 .

    Google Scholar 

  • Nebiker, S., & Wüst, T. (2006). 3D GIS concepts and technologies supporting the integrated management of large and complex cultural heritage sites. In E. P. Baltsavias, A. Gruen, L. van Gool, & M. Pateraki (Eds.), Recording, modeling and visualization of cultural heritage (pp. 263–276) . London: Taylor & Francis.BALKEMA—proceedings and monographs in engineering, water and earth sciences

    Google Scholar 

  • netfabb GmbH (2016). netfabb Basic. http://www.netfabb.com/basic.php. Accessed 16-Mar-16.

  • Newhard, J. (2015). 3D imaging in Mediterranean archaeology: what are we doing, anyway? In B. R. Olson & W. R. Caraher (Eds.), Visions of substance: 3D imaging in Mediterranean archaeology (9–16): The Digital Press @ The University of North Dakota.

  • Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial tessellations: concepts and algorithms of Voronoi diagrams . Chichester: Wiley.2nd edn, Wiley series in probability and statistics. Applied probability and statistics

    Book  Google Scholar 

  • Open Geospatial Consortium (2016). Geography Markup Language. Open Geospatial Consortium. http://www.opengeospatial.org/standards/gml. Accessed 17-Mar-16.

  • Opitz, R. S. (2013). An overview of airborne and terrestrial laser scanning in archaeology. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting archaeological topography: 3D data, visualisation and observation (pp. 13–31, Occasional Publication of the Aerial Archaeology Research Group, Vol. 5). Oxford and Oakville: Oxbow Books.

  • Opitz, R. S., & Cowley, D. C. (2013). Interpreting archaeological topography: lasers, 3D data, observation, visualisation and applications. In R. S. Opitz & D. C. Cowley (Eds.), Interpreting archaeological topography: 3D data, visualisation and observation (pp. 1–12, Occasional Publication of the Aerial Archaeology Research Group, Vol. 5). Oxford and Oakville: Oxbow Books.

  • Opitz, R. S., & Nowlin, J. (2012). Photogrammetric modeling + GIS: better methods for working with mesh data. ArcUser, Spring, 2012, 46–49.

    Google Scholar 

  • Phong, B. T. (1975). Illumination for computer generated pictures. Communications of the ACM. doi:10.1145/360825.360839 .

    Google Scholar 

  • Qin, R., Gruen, A., & Fraser, C. S. (2014). Quality assessment of image matchers for DSM generation—a comparative study based on UAV images. In Proceedings of the 35th Asian Conference on Remote Sensing (ACRS 2014). Nay Pyi Taw, Maynmar, 27–31 October 2014 doi:10.13140/2.1.3108.0005.

  • Rabinowitz, A. (2015). The work of archaeology in the age of digital surrogacy. In B. R. Olson & W. R. Caraher (Eds.), Visions of substance: 3D imaging in Mediterranean archaeology (27–42): The Digital Press @ The University of North Dakota.

  • Reilly, P. (1992). Three-dimensional modelling and primary archaeological data. In P. Reilly & S. Rahtz (Eds.), Archaeology and the information age: a gobal perspective (pp. 147–173). Oxfordshire - New Zork: Routledge.

    Chapter  Google Scholar 

  • Reinhard, A. (2015). Three- and four-dimensional archaeological publication. In B. R. Olson & W. R. Caraher (Eds.), Visions of substance: 3D imaging in Mediterranean archaeology (43–50): The Digital Press @ The University of North Dakota.

  • Remondino, F. (2003). From point cloud to surface: the modeling and visualization problem. In A. Gruen, S. Murai, J. Niederoest, & F. Remondino (Eds.), Proceedings of ISPRS 2003. Tarasp-Vulpera, Engadin, Switzerland, 24–28 February 2003 (ISPRS Archives, XXXIV-5/W10).

  • Remondino, F., Del Pizzo, S., Kersten, T. P., & Troisi, S. (2012). Low-cost and open-source solutions for automated image orientation—a critical overview. In M. Ioannides, D. Fritsch, J. Leissner, R. Davies, F. Remondino, & R. Caffo (Eds.), Euromed 2012, Lemessos, Cyprus, October 29–November 3, 2012 (Lecture notes in computer science, Vol. 7616, pp. 40–54). Berlin: Heidelberg: Springer.

  • Remondino, F., Spera, M. G., Nocerino, E., Menna, F., & Nex, F. (2014). State of the art in high density image matching. The Photogrammetric Record. doi:10.1111/phor.12063 .

    Google Scholar 

  • Richter, R., & Döllner, J. (2014). Concepts and techniques for integration, analysis and visualization of massive 3D point clouds. Computers, Environment and Urban Systems. doi:10.1016/j.compenvurbsys.2013.07.004 .

    Google Scholar 

  • Richter, R., Discher, S., & Döllner, J. (2015). Out-of-core visualization of classified 3D point clouds. In M. Breunig, M. Al-Doori, E. Butwilowski, P. V. Kuper, J. Benner, & K. Heinz Haefele (Eds.), 3D geoinformation science: the selected papers of the 3D GeoInfo 2014 (pp. 227–242) . Cham: Springer.Lecture Notes in Geoinformation and Cartography

    Google Scholar 

  • Robert McNeel & Associates (2016). Rhinoceros. https://www.rhino3d.com/. Accessed 21-Mar-16.

  • Roosevelt, C. H., Cobb, P., Moss, E., Olson, B. R., & Ünlüsoy, S. (2015). Excavation is destruction digitization: advances in archaeological practice. Journal of Field Archaeology. doi:10.1179/2042458215Y.0000000004 .

    Google Scholar 

  • SARL Rhinoterrain (2015). Rhinoterrain: Terrain modeling & City builder Software. http://www.rhinoterrain.com/en/home.html. Accessed 22-Mar-16.

  • Skarlatos, D., & Kiparissi, S. (2012). Comparison of laser scanning, photogrammetry and SfM-MVS pipeline applied in structures and artificial surfaces. In M. R. Shortis, N. Paparoditis, & C. Mallet (Eds.), Imaging a Sustainable Future, Melbourne, Australia, 25 August - 01 September, 2012 (I-3, pp. 299–304, ISPRS Annals, Volume I-3): ISPRS, doi:10.5194/isprsannals-I-3-299-2012.

  • Slocum, T. A., McMaster, R. B., Kessler, F. C., & Howard, H. H. (2014). Thematic cartography and geovisualization. Harlow: Pearson Education.

    Google Scholar 

  • SRI International (2002). GeoVRML 1.1 Specification. http://www.ai.sri.com/geovrml/1.1/doc/index.html. Accessed 17-Mar-16.

  • Szeliski, R. (2011). Computer vision: algorithms and applications (texts in computer science). New York: Springer.

    Book  Google Scholar 

  • Taha, A. A., & Hanbury, A. (2015). An efficient algorithm for calculating the exact Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence. doi:10.1109/TPAMI.2015.2408351 .

    Google Scholar 

  • Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., & Puppo, E. (2010). Practical quad mesh simplification. Computer Graphics Forum. doi:10.1111/j.1467-8659.2009.01610.x .

    Google Scholar 

  • Tobler, R. F., & Maierhofer, S. (2006). A mesh data structure for rendering and subdivision. In J. A. Jorge & V. Skala (Eds.), Proceedings of WSCG 2006. The 14th international conference in Central Europe on computer graphics, visualization and computer vision. University of West Bohemia, Plzen, Czech Republic, January 31–February 2, 2006 (pp. 157–162). Plzen: University of West Bohemia.

    Google Scholar 

  • Tsai, F., Liu, H.-S., Liu, J.-K., & Hsiao, K.-H. (2006). Progressive streaming and rendering of 3D terrain for Cyber City visualization. In Proceedings of the 27th Asian Conference on Remote Sensing. Proceedings of the 27th Asian Conference on Remote Sensing. Ulaanbaatar, Mongolia, 9–13 October 2006.

  • Tsai, F., Linand, W. J., & Chen, L. C. (2012). Multi-resolution representation of digital terrain and building models. In W. Shi, M. F. Goodchild, B. Lees, & Y. Leung (Eds.), Advances in geo-spatial information science (pp. 233–242). Boca Raton: CRC Press.ISPRS Book Series

    Google Scholar 

  • Tse, R. O., & Gold, C. (2004). TIN meets CAD—extending the TIN concept in GIS. Future Generation Computer Systems. doi:10.1016/j.future.2003.11.007 .

    Google Scholar 

  • United Nations (2000). Handbook on geographic information systems and digital mapping (Studies in methods, Vol. 79). New York: United Nations.

  • van Kreveld, M. (1997). Digital elevation models and TIN algorithms. In M. van Kreveld, J. Nievergelt, R. Thomas, & P. Widmayer (Eds.), Algorithmic foundations of geographic information systems (Lecture notes in computer science, Vol. 1340, pp. 37–78). Berlin, New York: Springer.

  • van Leusen, M., & van Gessel, S. (2016). Towards 3D GIS: notes from the 2012 CAA-NL/DE chapter session ‘from 2.5 to 3 spatial dimensions’. In H. Kamermans, W. de Neef, C. Piccoli, A. G. Posluschny, & R. Scopigno (Eds.), The three dimensions of archaeology. Proceedings of the XVII UISPP World Congress. Volume 7/Sessions A4b and A12. Burgos, Spain, 1–7 September (pp. 33–37). Oxford: Archaeopress Publishing.

    Google Scholar 

  • Vaughan, W. (2012). Digital modeling. Berkeley: New Riders.

    Google Scholar 

  • Verhoeven, G. (2011). Taking computer vision aloft—archaeological three-dimensional reconstructions from aerial photographs with PhotoScan. Archaeological Prospection. doi:10.1002/arp.399 .

    Google Scholar 

  • Verhoeven, G. (forthcoming). 0.5D extra—data models to digitally represent (archaeological) continuous terrain surfaces in three-dimensions. Journal of Archaeological Method and Theory.

  • Verhoeven, G., Doneus, M., Briese, C., & Vermeulen, F. (2012). Mapping by matching: a computer vision-based approach to fast and accurate georeferencing of archaeological aerial photographs. Journal of Archaeological Science. doi:10.1016/j.jas.2012.02.022 .

    Google Scholar 

  • Verhoeven, G., Sevara, C., Karel, W., Ressl, C., Doneus, M., & Briese, C. (2013). Undistorting the past: new techniques for orthorectification of archaeological aerial frame imagery. In C. Corsi, B. Slapšak, & F. Vermeulen (Eds.), Good practice in archaeological diagnostics: non-invasive survey of complex archaeological sites (pp. 31–67) . Cham: Springer International Publishing.Natural Science in Archaeology

    Chapter  Google Scholar 

  • Vermeulen, F., & Verhoeven, G. (2004). The contribution of aerial photography and field survey to the study of urbanization in the Potenza Valley (Picenum). Journal of Roman Archaeology, 17, 57–82.

    Article  Google Scholar 

  • Walter, V. (2014). A survey on state of the art of 3D Geographic Information Systems. In Offical Publication N° 64 (pp. 65–113). Vienna.

  • Web3D consortium (2014). Extensible 3D (X3D), ISO/IEC 19775-1:2013, 25 Geospatial Component. http://www.web3d.org/documents/specifications/19775-1/V3.3/Part01/components/geodata.html. Accessed 17-Mar-16.

  • Weiler, K. J. (1986). Topological structures for geometric modeling. PhD thesis. Rensselaer Polytechnic Institute, New York. http://www.scorec.rpi.edu/REPORTS/1986-1.pdf. Accessed 5 April 2016.

  • Wenzel, K., Rothermel, M., Haala, N., & Fritsch, D. (2013). SURE—the ipf software for dense image matching. In D. Fritsch (Ed.), Photogrammetric week 2013. Stuttgart, Germany (pp. 59–70). Stuttgart: ifp.

    Google Scholar 

  • Weßling, R., Maurer, J., & Krenn-Leeb, A. (2014). Structure from motion for systematic single surface documentation of archaeological excavations. In W. Börner & S. Uhlirz (Eds.), Proceedings of the 18th International Conference on Cultural Heritage and New Technologies (CHNT 18). Vienna, Austria, 11th–13th November 2013. Vienna: Museen der Stadt Wien – Stadtarchäologie.

  • Wheatley, D., & Gillings, M. (2002). Spatial technology and archaeology: the archaeological applications of GIS. New York: Taylor & Francis.

    Book  Google Scholar 

  • Wilson, J. P., & Gallant, J. C. (Eds.) (2000). Terrain analysis: principles and applications. New York: Wiley.

    Google Scholar 

  • Wu, L. (2004). Topological relations embodied in a generalized tri-prism (GTP) model for a 3D geoscience modeling system. Computers & Geosciences. doi:10.1016/j.cageo.2003.06.005 .

    Google Scholar 

  • Yilmaz, T., Güdükbay, U., & Akman, V. (2004). Modeling and visualization of complex geometric environments. In M. Sarfraz (Ed.), Geometric modeling: techniques, applications, systems and tools (pp. 3–30). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Zakšek, K., Oštir, K., & Kokalj, Ž. (2011). Sky-view factor as a relief visualization technique. Remote Sensing. doi:10.3390/rs3020398 .

    Google Scholar 

  • Zhukov, S., Iones, A., & Kronin, G. (1998). An ambient light illumination model. In G. Drettakis & N. Max (Eds.), Rendering techniques ‘98. Proceedings of the Eurographics Workshop in Vienna, Austria, June 29—July 1, 1998 (pp. 45–55). Vienna: Springer.

    Google Scholar 

  • Zlatanova, S., Rahman, A. A., & Pilouk, M. (2002). 3D GIS: Current status and perspectives. In C. Armenakis & Y. C. Lee (Eds.), Proceedings of the Symposium on Spatial information systems and digital mapping; Geospatial theory, processing and applications. Ottawa, Canada, July 9–12, 2002 (International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXIV Part 4): ISPRS.

Download references

Acknowledgments

The author would like to heartily thank Christopher Sevara and Seta Štuhec for their feedback on the first draft of this paper. Gratitude is also expressed to Professor Frank Vermeulen (Ghent University, Department of Archaeology) for directing the Potenza Valley Survey project and enabling the use of the aerial data. The latter were acquired by Professor Rudi Goossens (Ghent University, Department of Geography). Daniël Van Damme and Alain De Wulf (both Ghent University, Department of Geography) are heartily thanked for measuring the necessarily ground-control points. The author would also like to thank Ronny Weßling for sharing his expertise on the use of 3D geometry in ESRI’s ArcGIS.

The Ludwig Boltzmann Institute for Archaeological Prospection and Virtual Archaeology (archpro.lbg.ac.at) is based on the international cooperation of the Ludwig Boltzmann Gesellschaft (A), the University of Vienna (A), the Vienna University of Technology (A), ZAMG, the Austrian Central Institute for Meteorology and Geodynamics (A), the Province of Lower Austria (A), Airborne Technologies (A), 7reasons (A), the Austrian Academy of Sciences (A), the Austrian Archaeological Institute (A), RGZM, the Roman-Germanic Central Museum Mainz (D), the National Historical Museums—Contract Archaeology Service (S), the University of Birmingham (GB), the Vestfold County Council (N) and NIKU, the Norwegian Institute for Cultural Heritage Research (N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geert J. Verhoeven.

Ethics declarations

Conflict of Interest

The author declares that he has no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verhoeven, G.J. Mesh Is More—Using All Geometric Dimensions for the Archaeological Analysis and Interpretative Mapping of 3D Surfaces. J Archaeol Method Theory 24, 999–1033 (2017). https://doi.org/10.1007/s10816-016-9305-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-016-9305-z

Keywords

Navigation