Skip to main content
Log in

Differential Carnivore Damage as a Potential Indicator of Resource Availability and Foraging Efficiency

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Carnivore damage is typically documented in faunal assemblages to understand if attrition of elements or element portions has occurred. Thus, the amount of carnivore damage often is used to simply reflect how “complete” the assemblage is. However, gnawing is a means for carnivores to extract within bone nutrients. Thus, according to the marginal value theorem, the amount of time a carnivore gnaws on an element should be related to the availability of higher-ranked resources or foraging efficiency. In resource-rich environments, less damage is expected than in less productive ones. This expectation was tested by examining the degree of carnivore damage on fur seal remains from three archaeological sites in New Zealand that vary in availability of high-ranked resources. The analysis indicates that the extent and intensity of carnivore damage can relate to resource availability and thus may be a useful measure in prey choice studies. This research also has implications for the hominid scavenging-hunting debate where the degree of carnivore damage has been used to determine primary (hunting) versus secondary (scavenging) access to carcasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Allo, J. (1970). The Maori dog: a study of the Polynesian dog in New Zealand. Auckland: University of Auckland.

    Google Scholar 

  • Anderson, A. J. (1989). Prodigious birds. Cambridge: Cambridge University.

    Google Scholar 

  • Anderson, A. J., & McGlone, M. S. (1992). Living on the edge—prehistoric land and people in New Zealand. In J. Dodson (Ed.), The naive land (pp. 199–241). Melbourne: Longman Cheshire.

    Google Scholar 

  • Anderson, A., Allingham, B., & Smith, I. (Eds.). (1996). Shag river mouth: the archaeology of an early southern Maori village (research papers in archaeology and natural history, No 27). Canberra: ANH Publications, Australian National University.

    Google Scholar 

  • Barber, I. G. (1989). Of boundaries, drains and crops: a classification system for traditional Maori horticultural ditches. New Zealand Journal of Archaeology, 11, 23–50.

    Google Scholar 

  • Bartram, L. E., Jr., & Marean, C. W. (1999). Explaining the “Klasies Pattern”: Kua ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging. Journal of Archaeological Science, 26(1), 9–29.

    Article  Google Scholar 

  • Bay-Petersen, J. (1984). Competition for resources: the role of pig and dog in the Polynesian agricultural economy. Journal de la Societe des Oceanistes, 39(77), 121–129.

    Article  Google Scholar 

  • Behrensmeyer, A. K. (1978). Taphonomic and ecologic information from bone weathering. Paleobiology, 4(2), 150–162.

    Google Scholar 

  • Binford, L. R. (1978). Nunamiut ethnoarchaeology. New York: Academic.

    Google Scholar 

  • Binford, L. R. (1981). Bones: ancient Men and modern myths. New York: Academic.

    Google Scholar 

  • Binford, L. R. (1988). Fact and fiction about the Zinjanthropus floor: data, arguments, and interpretations. Current Anthropology, 29(1), 123–135.

    Article  Google Scholar 

  • Blumenschine, R. J. (1986). Carcass consumption sequences and the archaeological distinction of scavenging and hunting. Journal of Human Evolution, 15(8), 639–659.

    Article  Google Scholar 

  • Blumenschine, R. J. (1988). An experimental model of the timing of hominid and carnivore influence on archaeological bone assemblages. Journal of Archaeological Science, 15(5), 483–502.

    Article  Google Scholar 

  • Blumenschine, R. J. (1995). Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution, 29(1), 21–51.

    Article  Google Scholar 

  • Blumenschine, R. J., & Marean, C. W. (1993). A carnivore’s view of archaeological bone assemblages. In J. Hudson (Ed.), From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 273–299). Carbondale: Center for Archaeological Investigations, Southern Illinois University.

    Google Scholar 

  • Blumenschine, R. J., Marean, C. W., & Capaldo, S. D. (1996). Blind tests of inter-analyst correspondence and accuracy in the identification of cut marks, percussion marks, and carnivore tooth marks on bone surfaces. Journal of Archaeological Science, 23(4), 493–507.

    Article  Google Scholar 

  • Bunn, H. T., & Kroll, E. M. (1986). Systematic butchery by Plio-Pleistocene hominds at Olduvai Gorge, Tanzania. Current Anthropology, 27(5), 431–452.

    Article  Google Scholar 

  • Bunn, H. T., & Kroll, E. M. (1988). Reply to: fact and fiction about the Zinjanthropus floor: data, arguments, and interpretations. Current Anthropology, 29(1), 135–149.

    Google Scholar 

  • Cannon, M. D. (2003). A model of central place forager prey choice and an application to faunal remains from the Mimbres Valley, New Mexico. Journal of Anthropological Archaeology, 22(1), 1–25.

    Article  Google Scholar 

  • Capaldo, S. D. (1997). Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution, 33(5), 555–597.

    Article  Google Scholar 

  • Chambers, A. (1992). Seal bone mineral density: its effect on specimen survival in archaeological sites. B.A. Honors Thesis, University of Missouri, Columbia, Columbia, MO.

  • Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9, 129–136.

    Article  Google Scholar 

  • Charnov, E. L., Orians, G. H., & Hyatt, K. (1976). Ecological implications of resource depression. American Naturalist, 110(972), 247–259.

    Article  Google Scholar 

  • Clark, G. (1997a). Osteology of the kuri Maori: The prehistoric dog of New Zealand. Journal of Archaeological Science, 24(2), 113–126.

    Article  Google Scholar 

  • Clark, G. R. (1997b). Maori subsistence change: zooarchaeological evidence from the prehistoric dog of New Zealand. Asian Perspectives, 36(2), 200–219.

    Google Scholar 

  • Davidson, J. (1984). The prehistory of New Zealand. Auckland: Longman Paul.

    Google Scholar 

  • DelGiudice, G. D. (1998). Surplus killing of white-tailed deer by wolves in northcentral Minnesota. Journal of Mammalogy, 79(1), 227–235.

    Article  Google Scholar 

  • Domínguez -Rodrigo, M., & Piqueras, A. (2003). The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaeological Science, 30(11), 1385–1391.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M. (2001). A study of carnivore competition in riparian and open habitats of modern savannas and its implications for hominid behavioral modelling. Journal of Human Evolution, 40(2), 77–98.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M. (2002). Hunting and scavenging by early humans: the state of the debate. Journal of World Prehistory, 16(1), 1–54.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Barba, R. (2006). New estimates of tooth mark and percussion mark frequencies at the FLK Zinj site: the carnivore-hominid-carnivore hypothesis falsified. Journal of Human Evolution, 50(2), 170–194.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Barba, R. (2007). Five more arguments to invalidate the passive scavenging version of the carnivore-hominid-carnivore model: a reply to Blumenschine et al. (2007a). Journal of Human Evolution, 53(4), 427–433.

    Article  Google Scholar 

  • Domínguez-Rodrigo, M., & Pickering, T. R. (2003). Early hominid hunting and scavenging: a zooarcheological review. Evolutionary Anthropology: Issues, News, and Reviews, 12(6), 275–282. doi:10.1002/evan.10119.

    Article  Google Scholar 

  • Egeland, C. P., Domínguez-Rodrigo, M., & Barba, R. (2007). The hunting-versus-scavenging debate. In M. Domínguez-Rodrigo, R. Barba, & C. P. Egeland (Eds.), Deconstructing Olduvai: a taphonomic study of the bed I sites (pp. 11–22). Netherlands: Springer.

    Chapter  Google Scholar 

  • Faith, J. T., & Behrensmeyer, A. K. (2006). Changing patterns of carnivore modification in a landscape bone assemblage, Amboseli Park, Kenya. Journal of Archaeological Science, 33(12), 1718–1733.

    Article  Google Scholar 

  • Faith, J. T., Marean, C. W., & Behrensmeyer, A. K. (2007). Carnivore competition, bone destruction, and bone density. Journal of Archaeological Science, 34(12), 2025–2034.

    Article  Google Scholar 

  • Furey, L. (2002). Houhora: a fourteenth century Maori village in northland. Auckland: Auckland Museum.

    Google Scholar 

  • Grayson, D. K. (1984). Quantitative zooarchaeology. New York: Academic.

    Google Scholar 

  • Haast, J. (1872). Moas and moahunters. Address to the Philosophical Institute of Canterbury. Transactions of the New Zealand Institute, 4, 66–90.

    Google Scholar 

  • Haast, J. (1874). Notes on the moa-hunter encampment at Shag Point, Otago. Transactions and Proceedings of the New Zealand Institute, 7, 91–98.

    Google Scholar 

  • Haynes, G. (1980a). Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology, 6(3), 341–351.

    Google Scholar 

  • Haynes, G. (1980b). Prey bones and predators: potential ecologic information from analysis of bone sites. Ossa, 7, 75–97.

    Google Scholar 

  • Haynes, G. (1982). Utilization and skeletal disturbances of North American prey carcasses. Arctic, 35(2), 266–281.

    Article  Google Scholar 

  • Hudson, J. (1993). Impacts of domestic dogs on bone in forager camps; or, the dog-gone bones. In J. Hudson (Ed.), From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains (pp. 301–323). Carbondale: Center for Archaeological Investigations, Southern Illinois University.

    Google Scholar 

  • Huston, M. A., & Wolverton, S. (2009). The global distribution of net primary production: resolving the paradox. Ecological Monographs, 79(3), 343–377.

    Article  Google Scholar 

  • Huston, M. A., & Wolverton, S. (2011). Regulation of animal size by eNPP, Bergmann’s rule, and related phenomena. Ecological Monographs, 81(3), 349–405.

    Article  Google Scholar 

  • Hutton, F. W. (1875). Notes on the Maori cooking places at the mouth of the Shag River. Transactions of the New Zealand Institute, 8, 103–108.

    Google Scholar 

  • Klein, R. G. (1975). Paleoanthropological implications of the nonarchaeological bone assemblage from Swartklip I, Southwestern Cape Province, South Africa. Quaternary Research, 5, 275–288.

    Article  Google Scholar 

  • Klein, R. G., Cruz-Uribe, K., & Milo, R. G. (1999). Skeletal part representation in archaeofaunas: comments on “Explaining the ‘Klasies Pattern’: Kua Ethnoarchaeology, the Die Kelders Middle Stone Age archaeofauna, long bone fragmentation and carnivore ravaging” by Bartram & Marean. Journal of Archaeological Science, 26(9), 1225–1234.

    Article  Google Scholar 

  • Kuhn, B. F., Berger, L. R., Skinner, J. D. (2009). Variation in tooth mark frequencies on long bones from the assemblages of all three extant bone-collecting hyaenids. Journal of Archaeological Science, 36, 297–307.

    Google Scholar 

  • Leach, B. F. (1997). A guide to the identification of fish remains from New Zealand archaeological sites. Wellington: Museum of New Zealand Te Papa Tongarewa.

    Google Scholar 

  • Lyman, R. L. (1984). Bone density and differential survivorship of fossil classes. Journal of Anthropological Archaeology, 3, 259–299.

    Article  Google Scholar 

  • Lyman, R. L. (1994a). Vertebrate taphonomy (Cambridge manuals in archaeology). Cambridge: Cambridge University.

    Google Scholar 

  • Lyman, R. L. (1994b). Relative abundances of skeletal specimens and taphonomic analysis of vertebrate remains. Palaios, 9, 288–298.

    Article  Google Scholar 

  • Lyman, R. L. (2008). Quantitative paleozoology. New York: Cambridge University.

    Book  Google Scholar 

  • Lyman, R. L., Savelle, J. M., & Whitridge, P. (1992). Derivation and application of a meat utility index for Phocid seals. Journal of Archaeological Science, 19(5), 531–555.

    Article  Google Scholar 

  • Marean, C. W. (1991). Measuring the post-depositional destruction of bone in archaeological assemblages. Journal of Archaeological Science, 18(6), 677–694.

    Article  Google Scholar 

  • Marean, C. W., & Kim, S. Y. (1998). Mousterian large-mammal remains from Kobeh Cave—behavioral implications for Neanderthals and early modern humans. Current Anthropology, 39, S79–S113.

    Article  Google Scholar 

  • Marean, C. W., & Spencer, L. M. (1991). Impact of carnivore ravaging on zooarchaeoloigcal measures of element abundance. American Antiquity, 56(4), 645–658.

    Article  Google Scholar 

  • Marean, C. W., Spencer, L. M., Blumenschine, R. J., & Capaldo, S. D. (1992). Captive hyaena bone choice and destruction, the Schlepp effect and Olduvai archaeofaunas. Journal of Archaeological Science, 19(1), 101–121.

    Article  Google Scholar 

  • Mech, L. D., Frenzel, L. D., Jr., & Karns, P. D. (1971). The effect of snow conditions on the vulnerability of white-tailed deer to wolf predation. In L. D. Mech & L. D. Frenzel Jr. (Eds.), Ecological studies of the timber wolf in northeaster Minnesota (pp. 51–59). St. Paul: North Central Frest Experiment Station, Forest Service, U. S. Department of Agriculture.

    Google Scholar 

  • Mech, L. D., Smith, D. W., Murphy, K. M., & MacNulty, D. R. (2001). Winter severity and wolf predation on a formerly wolf-free elk herd. The Journal of Wildlife Management, 65(4), 998–1003.

    Article  Google Scholar 

  • Munson, P. J., & Garniewicz, R. C. (2003). Age-mediated survivorship of ungulate mandibles and teeth in canid-ravaged faunal assemblages. Journal of Archaeological Science, 30(4), 405–416.

    Article  Google Scholar 

  • Nagaoka, L. (2002). The effects of resource depression on foraging efficiency, diet breadth, and patch use in southern New Zealand. Journal of Anthropological Archaeology, 21(4), 419–442.

    Article  Google Scholar 

  • Nagaoka, L. (2005). Declining foraging efficiency and moa carcass exploitation in southern New Zealand. Journal of Archaeological Science, 32(9), 1328–1338.

    Article  Google Scholar 

  • Nagaoka, L. (2006). Prehistoric seal carcass exploitation at the Shag Mouth Site, New Zealand. Journal of Archaeological Science, 33(10), 1474–1481.

    Article  Google Scholar 

  • Nagaoka, L., Wolverton, S., & Fullerton, B. (2008). Taphonomy of Twilight Beach seals. In G. Clark, B. F. Leach, & S. Bulmer (Eds.), Islands of inquiry: colonisation, seafaring and the archaeology of maritime landscapes (pp. 475–498). Canberra: Australian National University. Terra Australis 79.

    Google Scholar 

  • Selvaggio, M. M. (1994). Carnivore tooth marks and stone tool butchery marks on scavenged bones: archaeological implications. Journal of Human Evolution, 27(1–3), 215–228.

    Article  Google Scholar 

  • Selvaggio, M. M. (1998). Evidence for a three-stage sequence of hominid and carnivore involvement with long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Archaeological Science, 25(3), 191–202.

    Article  Google Scholar 

  • Shawcross, W. (1967). An investigation of prehistoric diet and economy on a coastal site at Galatea Bay, New Zealand. Proceedings of the Prehistoric Society, 33, 107–131.

    Article  Google Scholar 

  • Shawcross, W. (1972). Energy and ecology: thermodynamic models in archaeology. In D. L. Clarke (Ed.), Models in archaeology (pp. 577–622). London: Methuen.

    Google Scholar 

  • Smith, I. W. G. (1985). Sea mammal hunting and prehistoric subsistence in New Zealand. Ph.D. dissertation, University of Otago.

  • Smith, I. W. G. (1989). Maori impact on the marine megafauna: pre-European distributions of New Zealand sea mammals. In D. G. Sutton (Ed.), Saying so doesn't make it so: essays in honour of B. Foss Leach (pp. 76–108). Auckland: New Zealand Archaeological Association Monograph 17. New Zealand Archaeological Association.

    Google Scholar 

  • Smith, D. W., Drummer, T. D., Murphy, K. M., Guernsey, D. S., & Evans, S. B. (2004). Winter prey selection and estimation of wolf kill rates in Yellowstone National Park 1995-2000. Journal of Wildlife Management, 68(1), 153–166.

    Article  Google Scholar 

  • Stein, B. R. (1989). Bone density and adaptation in semiaquatic mammals. Journal of Mammalogy, 467–476.

  • Taylor, M. (1982). Bone refuse from Twilight Beach. M.A. Thesis, University of Auckland, Auckland.

  • Teviotdale, D. (1924). Excavations near the mouth of the Shag River, Otago. Journal of the Polynesian Society, 33, 4–10.

    Google Scholar 

  • Wall, W. P. (1983). The correlation between high limb-bone density and aquatic habits in recent mammals. Journal of Paleontology, 57(2), 197–207.

    Google Scholar 

  • Wolverton, S. (2002). NISP:MNE and % whole in analysis of prehistoric carcass exploitation. North American Archaeologist, 23(2), 85–100.

    Article  Google Scholar 

  • Wolverton, S., Nagaoka, L., Densmore, J., & Fullerton, B. (2008). White-tailed deer harvest pressure and within-bone nutrient exploitation during the mid-to late Holocene in southeast Texas. Before Farming, 2008, 1–23.

    Article  Google Scholar 

  • Worthy, T. H., & Holdaway, R. N. (2003). The lost world of the moa. Bloomington: Indiana University Press.

    Google Scholar 

Download references

Acknowledgments

Thanks to the Departments of Anthropology at the University of Auckland and University of Otago, and the Museum of New Zealand Te Papa Tongarewa for access to the collections. Steve Wolverton, Lee Lyman, and Jon Dombrosky provided helpful comments on the manuscript. An anonymous reviewer provided helpful comments on the paleoanthropological research. This research was funded by a National Science Foundation Grant (No. 0408963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa Nagaoka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagaoka, L. Differential Carnivore Damage as a Potential Indicator of Resource Availability and Foraging Efficiency. J Archaeol Method Theory 22, 828–856 (2015). https://doi.org/10.1007/s10816-014-9207-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-014-9207-x

Keywords

Navigation