Skip to main content
Log in

Microarchaeological Approaches to the Identification and Interpretation of Combustion Features in Prehistoric Archaeological Sites

  • Published:
Journal of Archaeological Method and Theory Aims and scope Submit manuscript

Abstract

Combustion features inform archaeologists about the prehistoric use of space, subsistence behaviors, and tempo of site visitation. Their study in the field is difficult because burned sediments are susceptible to reworking and diagenesis. Microarchaeological analyses, including micromorphology, are essential for documenting the composition, preservation, and function of hearths and other burned residues. These investigations focus on the description of fuels, depositional fabrics and structures, and mineralogy. As evidenced by a literature review, microarchaeological analyses have much to offer Paleolithic archaeologists, while applications of the techniques to Late Pleistocene and Early Holocene sites and in ethnographic or experimental contexts are presently rare.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. Also spelled “rubefied.”

  2. Other types of ash, such as fly ash or volcanic ash, are not considered here.

References

  • Adler, D. S., Prindiville, T. J., & Conard, N. J. (2003). Patterns of spatial organization and land use during the Eemian Interglacial in the Rhineland: New data from Wallertheim, Germany. Eurasian Prehistory, 1(2), 25–78.

    Google Scholar 

  • Aitken, M. J. (1978). Archaeological involvements of physics. Physics Reports, 40(5), 277–351.

    Google Scholar 

  • Aitken, M. J. (1985). Thermoluminescence dating. London: Academic.

    Google Scholar 

  • Aitken, M. J. (1998). An introduction to optical dating. Oxford: Oxford University Press.

    Google Scholar 

  • Akazawa, T., & Sakaguchi, Y. (1987). Paleolithic site of Douara Cave and paleogeography of Palmyra Basin in Syria, part IV: 1984 excavations. Tokyo: The University of Tokyo.

    Google Scholar 

  • Albert, R. M., & Weiner, S. (2001). Study of phytoliths in prehistoric ash layers from Kebara and Tabun caves using a quantitative approach. In J. D. Meunier & F. Colin (Eds.), Phytoliths: Applications in earth sciences and human history (pp. 251–266). Lisse: Swets and Zeitlinger.

    Google Scholar 

  • Albert, R. M., Lavi, O., Estroff, L., Weiner, S., Tsatskin, A., Ronen, A., et al. (1999). Mode of occupation of Tabun Cave, Mt Carmel, Israel during the Mousterian Period: A study of the sediments and phytoliths. Journal of Archaeological Science, 26(10), 1249–1260.

    Google Scholar 

  • Albert, R. M., Weiner, S., Bar Yosef, O., & Meignen, L. (2000). Phytoliths in the Middle Palaeolithic deposits of Kebara Cave, Mt. Carmel, Israel: Study of the plant materials used for fuel and other purposes. Journal of Archaeological Science, 27(10), 931–947.

    Google Scholar 

  • Albert, R. M., Berna, F., & Goldberg, P. (2012). Insights on Neanderthal fire use at Kebara Cave (Israel) through high resolution study of prehistoric combustion features: Evidence from phytoliths and thin sections. Quaternary International, 247, 278–293.

    Google Scholar 

  • Alperson-Afil, N., Sharon, G., Kislev, M., Melamed, Y., Zohar, I., Ashkenazi, S., et al. (2009). Spatial organization of hominin activities at Gesher Benot Ya’aqov, Israel. Science, 326(5960), 1677–1680.

    Google Scholar 

  • Angelucci, D. E. (2003). Geoarchaeology and micromorphology of Abric de la Cativera (Catalonia, Spain). Catena, 54(3), 573–601.

    Google Scholar 

  • Araujo, A. G. M., Feathers, J. K., Arroyo-Kalin, M., & Tizuka, M. M. (2008). Lapa das Boleiras rockshelter: Stratigraphy and formation processes at a Paleoamerican site in Central Brazil. Journal of Archaeological Science, 35(12), 3186–3202.

    Google Scholar 

  • Arpin, T. L., Mallol, C., & Goldberg, P. (2002). Short contribution: A new method of analyzing and documenting micromorphological thin sections using flatbed scanners: Applications in geoarchaeological studies. Geoarchaeology-An International Journal, 17(3), 305–313.

    Google Scholar 

  • Asouti, E. (2003). Woodland vegetation and fuel exploitation at the prehistoric campsite of Pınarbaşı, south-central Anatolia, Turkey: The evidence from the wood charcoal macro-remains. Journal of Archaeological Science, 30, 1185–1201.

    Google Scholar 

  • Audouze, F., & Enloe, J. G. (1997). High resolution archaeology at Verberie: Limits and interpretations. World Archaeology, 29(2), 195–207.

    Google Scholar 

  • Balbo, A. L., Madella, M., Vila, A., & Estévez, J. (2010). Micromorphological perspectives on the stratigraphical excavation of shell middens: A first approximation from the ethnohistorical site Tunel VII, Tierra del Fuego (Argentina). Journal of Archaeological Science, 37, 1252–1259.

    Google Scholar 

  • Barkai, R., Gopher, A., Lauritzen, S. E., & Frumkin, A. (2003). Uranium series dates from Qesem Cave, Israel, and the end of the Lower Palaeolithic. Nature, 423(6943), 977–979.

    Google Scholar 

  • Bar-Yosef, O., Vandermeersch, B., Arensburg, B., Belfer-Cohen, A., Goldberg, P., Laville, H., et al. (1992). The excavations in Kebara Cave, Mount Carmel. Current Anthropology, 33(5), 497–550.

    Google Scholar 

  • Berna, F., & Goldberg, P. (2008). Assessing Paleolithic pyrotechnology and associated hominin behavior in Israel. Israel Journal of Earth Science, 56, 107–121.

    Google Scholar 

  • Berna, F., Matthews, A., & Weiner, S. (2004). Solubilities of bone mineral from archaeological sites: The recrystallization window. Journal of Archaeological Science, 31(7), 867–882.

    Google Scholar 

  • Berna, F., Behar, A., Shahack-Gross, R., Berg, J., Boaretto, E., Gilboa, A., et al. (2007). Sediments exposed to high temperatures: Reconstructing pyrotechnological processes in Late Bronze and Iron Age Strata at Tel Dor (Israel). Journal of Archaeological Science, 34(3), 358–373.

    Google Scholar 

  • Berna, F., Goldberg, P., Horwitz, L. K., Brink, J., Holt, S., Bamford, M., et al. (2012). Microstratigraphic evidence of in situ fire in the Acheulean strata of Wonderwerk Cave, Northern Cape province, South Africa. Proceedings of the National Academy of Sciences, 109, E1215–E1220.

    Google Scholar 

  • Binford, L. R. (1978). Dimensional analysis of behavior and site structure: Learning from an Eskimo hunting stand. American Antiquity, 43(3), 330–361.

    Google Scholar 

  • Bird, M. I., Fifield, L. K., Santos, G. M., Beaumont, P. B., Zhou, Y., di Tada, M. L., et al. (2003). Radiocarbon dating from 40 to 60 ka BP at Border Cave, South Africa. Quaternary Science Reviews, 22(8–9), 943–947.

    Google Scholar 

  • Boardman, S., & Jones, G. (1990). Experiments on the effects of charring on cereal plant components. Journal of Archaeological Science, 17, 1–11.

    Google Scholar 

  • Boschian, G. (1997). Sedimentology and soil micromorphology of the late Pleistocene and early Holocene deposits of Grotta dell’Edera (Trieste Karst, NE Italy). Geoarchaeology, 12(3), 227–249.

    Google Scholar 

  • Braadbaart, F., & Poole, I. (2008). Morphological, chemical and physical changes during charcoalification of wood and its relevance to archaeological contexts. Journal of Archaeological Science, 35(9), 2434–2445.

    Google Scholar 

  • Brochier, J. É., & Thinon, M. (2003). Calcite crystals, starch grains aggregates or…POCC? Comment on ‘calcite crystals inside archaeological plant tissues’. Journal of Archaeological Science, 30(9), 1211–1214.

    Google Scholar 

  • Cabanes, D., Mallol, C., Expósito, I., & Baena, J. (2010). Phytolith evidence for hearths and beds in the late Mousterian occupations of Esquilleu cave (Cantabria, Spain). Journal of Archaeological Science, 37(11), 2947–2957.

    Google Scholar 

  • Canti, M. G. (2003). Aspects of the chemical and microscopic characteristics of plant ashes found in archaeological soils. Catena, 54(3), 339–361.

    Google Scholar 

  • Canti, M. G., & Linford, N. (2000). The effects of fire on archaeological soils and sediments: Temperature and colour relationships. Proceedings of the Prehistoric Society, 66, 385–395.

    Google Scholar 

  • Carmody, R. N., & Wrangham, R. W. (2009). The energetic significance of cooking. Journal of Human Evolution, 57(4), 379–391.

    Google Scholar 

  • Chu, V., Regev, L., Weiner, S., & Boaretto, E. (2008). Differentiating between anthropogenic calcite in plaster, ash and natural calcite using infrared spectroscopy: Implications in archaeology. Journal of Archaeological Science, 35(4), 905–911.

    Google Scholar 

  • Clark, J. L., & Ligouis, B. (2010). Burned bone in the Howieson’s Poort and post-Howieson’s Poort Middle Stone Age deposits at Sibudu (South Africa): Behavioral and taphonomic implications. Journal of Archaeological Science, 37(10), 2650–2661.

    Google Scholar 

  • Cohen-Ofri, I., Weiner, L., Boaretto, E., Mintz, G., & Weiner, S. (2006). Modern and fossil charcoal: Aspects of structure and diagenesis. Journal of Archaeological Science, 33(3), 428–439.

    Google Scholar 

  • Conard, N. J., Prindiville, T. J., & Adler, D. S. (1998). Refitting bones and stones as a means of reconstructing Middle Paleolithic subsistence in the Rhineland. In J. P. Brugal, L. Meignen, & M. Patou-Mathis (Eds.), Economie Préhistorique: Les Comportements de Subsistence au Paleolithique, Editions APDCA (pp. 273–290). Antibes: Sophia Antipolis.

    Google Scholar 

  • Costamagno, S., Théry-Parisot, I., Brugal, J. P., & Guilbert, R. (2005). Taphonomic consequences of the use of bones as fuel. Experimental data and archaeological applications. In T. O’Conner (Ed.), Biosphere to lithosphere: New studies in vertebrate taphonomy (pp. 51–62). London: Oxbow Books.

    Google Scholar 

  • Costamagno, S., Théry-Parisot, I., Brugal, J. P., & Guilbert, R. (2009). Combustible ou non? Analyse multifactorielle et modèles explicatifs sur des ossements brûlées paléolithiques. In I. Théry-Parisot, S. Costamagno, & A. Henry (Eds.), Gestion des Combustibles au Paléolithique et au Mésolithique: Nouveaux Outils, Nouvelles Interpretations (pp. 65–84). Oxford: Archaeopress.

    Google Scholar 

  • Courty, M. A., Goldberg, P., & Macphail, R. I. (1989). Soils and micromorphology in archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Courty, M.-A., Carbonell, E., Vallverdú Poch, J., & Banerjee, R. (2010). Microstratigraphic and multi-analytical evidence for advanced Neanderthal pyrotechnology at Abric Romani (Capellades, Spain). Quaternary International. doi:10.1016/j.quaint.2010.10.031.

  • Crawford, H. (1981). Some fire installations from Abu Salabikh, Iraq (Dedicated to the memory of Margaret Munn-Rankin). Paléorient, 7(2), 105–114.

  • Dibble, H. L., Chase, P. G., Shannon, P. M., & Tuffreau, A. (1997). Testing the reality of a “living floor” with archaeological data. American Antiquity, 62(4), 629–651.

    Google Scholar 

  • Dibble, H., Berna, F., Goldberg, P., McPherron, S. J. P., Mentzer, S., Niven, L., et al. (2009). A preliminary report on Pech de l’Azé IV, Layer 8 (Middle Paleolithic, France). PaleoAnthropology, 2009, 182–219.

    Google Scholar 

  • Dreimanis, A. (1962). Quantitative gasometric determination of calcite and dolomite by using Chittick apparatus. Journal of Sedimentary Petrology, 32(3), 520–529.

    Google Scholar 

  • Drever, J. I. (1997). The geochemistry of natural waters: Surface and groundwater environments. Upper Saddle River: Prentice Hall.

    Google Scholar 

  • Elbaum, R., Weiner, S., Albert, R. M., & Elbaum, M. (2003). Detection of burning of plant materials in the archaeological record by changes in the refractive indices of siliceous phytoliths. Journal of Archaeological Science, 30(2), 217–226.

    Google Scholar 

  • Elefanti, P., Panagopoulou, E., & Karkanas, P. (2008). The transition from the Middle to the Upper Paleolithic in the southern Balkans: The evidence from the Lakonis I Cave, Greece. Eurasian Prehistory, 5(2), 85–95.

    Google Scholar 

  • Eliyahu-Behar, A., Regev, L., Shilstein, S., Weiner, S., Shalev, Y., Sharon, I., et al. (2009). Identifying a Roman casting pit at Tel Dor, Israel: Integrating field and laboratory research. Journal of Field Archaeology, 34(2), 135–151.

    Google Scholar 

  • Etiégni, L., & Campbell, A. G. (1991). Physical and chemical characteristics of wood ash. Bioresource Technology, 37(2), 173–178.

    Google Scholar 

  • Folk, R. L., & Hoops, G. K. (1982). An Early Iron-Age layer of glass made from plants at Tel Yin’am, Israel. Journal of Field Archaeology, 9(4), 455–466.

    Google Scholar 

  • Gale, R., & Carruthers, W. (2000). Charcoal and charred seed remains from Middle Palaeolithic levels at Gorham’s and Vanguard Caves. In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge. Oxford: Oxbow Books.

    Google Scholar 

  • Godino, I. B., Álvarez, M., Balbo, A., Zurro, D., Madella, M., Villagrán, X., et al. (2011). Towards high-resolution shell midden archaeology: Experimental and ethnoarchaeology in Tierra del Fuego (Argentina). Quaternary International, 239(1–2), 125–134.

    Google Scholar 

  • Goldberg, P. (1979). Micro-morphology of Pech de L’Azé II sediments. Journal of Archaeological Science, 6(1), 17–47.

    Google Scholar 

  • Goldberg, P. (2000). Micromorphology and site formation at Die Kelders Cave I, South Africa. Journal of Human Evolution, 38(1), 43–90.

    Google Scholar 

  • Goldberg, P. (2001). Some micromorphological aspects of prehistoric cave deposits. Cahiers de Archéologie du CELAT, 10(Série archéometrie No. 1), 161–175.

    Google Scholar 

  • Goldberg, P. (2003). Some observations on Middle and Upper Paleolithic ashy cave and rockshelter deposits in the Near East. In A. N. Goring-Morris & A. Belfer-Cohen (Eds.), More than meets the eye: Studies on Upper Palaeolithic diversity in the Near East (pp. 19–32). Oxford: Oxbow Books.

    Google Scholar 

  • Goldberg, P., & Bar-Yosef, O. (1998). Site formation processes in Kebara and Hayonim caves and their significance in Levantine prehistoric caves. In T. Akazawa, K. Aoki, & O. Bar-Yosef (Eds.), Neandertals and modern humans in Western Asia (pp. 107–125). New York: Plenum.

    Google Scholar 

  • Goldberg, P., & Berna, F. (2010). Micromorphology and context. Quaternary International, 214(1–2), 56–62.

    Google Scholar 

  • Goldberg, P., & Sherwood, S. C. (2006). Deciphering human prehistory through the geoarcheological study of cave sediments. Evolutionary Anthropology: Issues, News, and Reviews, 15(1), 20–36.

    Google Scholar 

  • Goldberg, P., Lev-Yadun, S., & Bar-Yosef, O. (1994). Petrographic thin section of archaeological sediments: A new method for paleobotanical studies. Geoarchaeology, 9(3), 243–257.

    Google Scholar 

  • Goldberg, P., Weiner, S., Bar-Yosef, O., Xu, Q., & Liu, J. (2001). Site formation processes at Zhoukoudian, China. Journal of Human Evolution, 41(5), 483–530.

    Google Scholar 

  • Goldberg, P., Schiegl, S., Meligne, K., Dayton, C., & Conard, N. J. (2003). Micromorphology and site formation at Hohle Fels Cave, Swabian Jura, Germany. Eiszeitalter Gegenwart, 53, 1–25.

    Google Scholar 

  • Goldberg, P., Miller, C., Schiegl, S., Ligouis, B., Berna, F., Conard, N., et al. (2009). Bedding, hearths, and site maintenance in the Middle Stone Age of Sibudu Cave, KwaZulu-Natal, South Africa. Archaeological and Anthropological Sciences, 1(2), 95–122.

    Google Scholar 

  • Goldberg, P., Dibble, H., Berna, F., Sandgathe, D., McPherron, S. J. P., & Turq, A. (2012). New evidence on Neandertal use of fire: Examples from Roc de Marsal and Pech de l’Azé IV. Quaternary International, 247, 325–340.

    Google Scholar 

  • Goren-Inbar, N., Alperson, N., Kislev, M. E., Simchoni, O., Melamed, Y., Ben-Nun, A., et al. (2004). Evidence of hominin control of fire at Gesher Benot Ya’aqov, Israel. Science, 304(5671), 725–727.

    Google Scholar 

  • Grigor’ev, G. P. (1993). The Kostenki-Avdeevo archaeological culture and the Villendorf-Pavlov-Kostenki-Avdeevo cultural unity. In O. Soffer & N. D. Praslov (Eds.), From Kostenki to Clovis: Upper Paleolithic and Paleo-Indian adaptations (pp. 51–66). New York: Plenum.

    Google Scholar 

  • Herries, A. I. R. (2009). New approaches for integrating palaeomagnetic and mineral magnetic methods to answer archaeological and geological questions on Stone Age sites. In A. Fairbairn, S. O’Conner, & B. Marwick (Eds.), Terra Australis 28—New directions in archaeological science (pp. 235–253). Canberra: Australia National University Press.

    Google Scholar 

  • Herries, A. I. R., & Fisher, E. C. (2011). Multidimensional GIS modeling of magnetic mineralogy as a proxy for fire use and spatial patterning: Evidence from the Middle Stone Age bearing sea cave of Pinnacle Point 13B (Western Cape, South Africa). Journal of Human Evolution, 59(3–4), 306–320.

    Google Scholar 

  • Herries, A. I. R., Kovacheva, M., Kostadinova, M., & Shaw, J. (2007). Archaeo-directional and -intensity data from burnt structures at the Thracian site of Halka Bunar (Bulgaria): The effect of magnetic mineralogy, temperature and atmosphere of heating in antiquity. Physics of the Earth and Planetary Interiors, 162(3–4), 199–216.

    Google Scholar 

  • Hiller, J. C., Thompson, T. J. U., Evison, M. P., Chamberlain, A. T., & Wess, T. J. (2003). Bone mineral change during experimental heating: An X-ray scattering investigation. Biomaterials, 24(28), 5091–5097.

    Google Scholar 

  • Homsey, L. K., & Capo, R. C. (2006). Integrating geochemistry and micromorphology to interpret feature use at Dust Cave, a Paleo-Indian through Middle-Archaic site in northwest Alabama. Geoarchaeology, 21(3), 237–269.

    Google Scholar 

  • Homsey, L. K., & Sherwood, S. C. (2010). Interpretation of prepared clay surfaces at Dust Cave, Alabama. Ethnoarchaeology, 2(1), 73–98.

    Google Scholar 

  • James, S. R., Dennell, R. W., Gilbert, A. S., Lewis, H. T., Gowlett, J. A. J., Lynch, T. F., et al. (1989). Hominid use of fire in the Lower and Middle Pleistocene: A review of the evidence [and comments and replies]. Current Anthropology, 30(1), 1–26.

    Google Scholar 

  • Karkanas, P. (2001). Site formation processes in Theopetra Cave: A record of climatic change during the Late Pleistocene and Early Holocene in Thessaly, Greece. Geoarchaeology, 16(4), 373–399.

    Google Scholar 

  • Karkanas, P. (2002). Micromorphological studies of Greek prehistoric sites: New insights in the interpretation of the archaeological record. Geoarchaeology, 17(3), 237–259.

    Google Scholar 

  • Karkanas, P. (2007). Identification of lime plaster in prehistory using petrographic methods: A review and reconsideration of the data on the basis of experimental and case studies. Geoarchaeology, 22(7), 775–796.

    Google Scholar 

  • Karkanas, P. (2010). Geology, stratigraphy and site formation processes in the Upper Paleolithic and later sequence in Kissoura Cave 1. Eurasian Prehistory, 7(2), 15–36.

    Google Scholar 

  • Karkanas, P., & Goldberg, P. (2010). Site formation processes at Pinnacle Point Cave 13B (Mossel Bay, Western Cape Province, South Africa): Resolving stratigraphic and depositional complexities with micromorphology. Journal of Human Evolution, 59(3–4), 256–273.

    Google Scholar 

  • Karkanas, P., Kyparissi-Apostolika, N., Bar-Yosef, O., & Weiner, S. (1999). Mineral assemblages in Theopetra, Greece: A framework for understanding diagenesis in a prehistoric cave. Journal of Archaeological Science, 26(9), 1171–1180.

    Google Scholar 

  • Karkanas, P., Bar-Yosef, O., Goldberg, P., & Weiner, S. (2000). Diagenesis in prehistoric caves: the use of minerals that form in situ to assess the completeness of the archaeological record. Journal of Archaeological Science, 27(10), 915–929.

    Google Scholar 

  • Karkanas, P., Rigaud, J.-P., Simek, J. F., Albert, R. M., & Weiner, S. (2002). Ash, bones and guano: A study of the minerals and phytoliths in the sediments of Grotte XVI, Dordogne, France. Journal of Archaeological Science, 29(7), 721–732.

    Google Scholar 

  • Karkanas, P., Koumouzelis, M., Kozlowski, J. K., Sitlivy, V., Sobczyk, K., Berna, F., et al. (2004). The earliest evidence for clay hearths: Aurignacian features in Klisoura Cave 1, southern Greece. Antiquity, 78(301), 513–525.

    Google Scholar 

  • Karkanas, P., Shahack-Gross, R., Ayalon, A., Bar-Matthews, M., Barkai, R., Frumkin, A., et al. (2007). Evidence for habitual use of fire at the end of the Lower Paleolithic: Site-formation processes at Qesem Cave, Israel. Journal of Human Evolution, 53(2), 197–212.

    Google Scholar 

  • Kedrowski, B. L., Crass, B. A., Behm, J. A., Luetke, J. C., Nichols, A. L., Moreck, A. M., et al. (2009). GC/MS analysis of fatty acids from ancient hearth residues at the Swan Point archaeological site. Archaeometry, 51(1), 110–122.

    Google Scholar 

  • Kourampas, N., Simpson, I. A., Perera, N., Deraniyagala, S. U., & Wijeyapala, W. H. (2009). Rockshelter sedimentation in a dynamic tropical landscape: Late Pleistocene–Early Holocene archaeological deposits in Kitulgala Beli-lena, Southwestern Sri Lanka. Geoarchaeology, 24(6), 677–714.

    Google Scholar 

  • Lanting, J. N., Aerts-Bijma, A. T., & Van der Plicht, J. (2001). Dating of cremated bones. Radiocarbon, 43(2A), 249–254.

    Google Scholar 

  • Latham, A. G., & Herries, A. I. R. (2004). The formation and sedimentary infilling of the Cave of Hearths and Historic Cave complex, Makapansgat, South Africa. Geoarchaeology, 19(4), 323–342.

    Google Scholar 

  • Ligouis, B. (2006). Jais, lignite, charbon et autres matières organiques fossiles: Application de la pétrologie organique à la’étude des élements de parure et des fragments bruts. In J. Bullinger, D. Leesch, & N. Plumettaz (Eds.), Le site magdalénian de Monruz, 1. Premiers éléments pour l’analyse d’un habitat de plein air (pp. 197–216). Neuchâtel: Service et Musée Cantonal d’Archéologie.

    Google Scholar 

  • Macphail, R., & Crowther, I. (2007). Soil micromorphology, chemistry and magnetic susceptibility studies at Huizui (Yilou region, Henan province, northern China), with special focus on a typical Yangshao floor sequence. Indo-Pacific Prehistory Association Bulletin, 27, 103–113.

    Google Scholar 

  • Macphail, R., & Goldberg, P. (2000). Geoarchaeological investigations of sediments from Gorham’s and Vanguard Caves, Gibralter: Microstrigraphical (soil micromorphological and chemical) signatures. In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge (pp. 183–200). Oxford: Oxbow Books.

    Google Scholar 

  • Madella, M., Jones, M. K., Goldberg, P., Goren, Y., & Hovers, E. (2002). The exploitation of plant resources by Neanderthals in Amud Cave (Israel): The evidence from phytolith studies. Journal of Archaeological Science, 29(7), 703–719.

    Google Scholar 

  • Mallol, C., Marlowe, F. W., Wood, B. M., & Porter, C. C. (2007). Earth, wind, and fire: Ethnoarchaeological signals of Hadza fires. Journal of Archaeological Science, 34(12), 2035–2052.

    Google Scholar 

  • Mallol, C., Mentzer, S. M., & Wrinn, P. J. (2009). A micromorphological and mineralogical study of site formation processes at the late Pleistocene site of Obi-Rakhmat, Uzbekistan. Geoarchaeology, 24(5), 548–575.

    Google Scholar 

  • Mallol, C., Cabanes, D., & Baena, J. (2010). Microstratigraphy and diagenesis at the upper Pleistocene site of Esquilleu Cave (Cantabria, Spain). Quaternary International, 214(1–2), 70–81.

    Google Scholar 

  • March, R. J., Baldessari, A., Ferreri, J. C., Grande, A., Gros, E. G., Morello, O., et al. (1989). Étude des structures de combustion archéologiques d’Argentine. Bulletin de la Société Préhistorique Française, 86(10/12), 384–392.

    Google Scholar 

  • March, R. J., Ferreri, J. C., & Guez, C. (1993). Etude des foyers préhistoriques des gisements Magdaleniens du Bassin Parisien. L’approche experimentale. Memoires du Groupement Archeologique de Seine-et-Marne, 1, 87–95.

    Google Scholar 

  • March, R. J., Muhieddine, M., & Canot, É. (2010). Simulation 3D des structures de combustion préhistoriques. In R. Vernieux & C. Delevoie (Eds.), Actes du Colloque Virtual Retrospect 2009 (pp. 19–29). Bordeaux: Editions Ausonius.

    Google Scholar 

  • Matthews, W. (2010). Geoarchaeology and taphonomy of plant remains and microarchaeological residues in early urban environments in the Ancient Near East. Quaternary International, 214(1–2), 98–113.

    Google Scholar 

  • Meignen, L., Bar-Yosef, O., & Goldberg, P. (1989). Les structures de combustion moustériennes de la grotte de Kébara (Mont Carmel, Israël). In M. Olive & Y. Taborin (Eds.), Nature et fonctions des foyers prehistoriques (pp. 141–146). Nemours: APRAIF.

    Google Scholar 

  • Meignen, L., Bar Yosef, O., Goldberg, P., & Weiner, S. (2001). Le feu au Paléolithique moyen: recherches sur les structures de combustion et le statut des foyers. Paleorient, 26(2), 9–22.

    Google Scholar 

  • Meignen, L., Goldberg, P., & Bar Yosef, O. (2007). The hearths at Kebara Cave and their role in site formation processes. In O. Bar Yosef & L. Meignen (Eds.), Kebara Cave, Mt. Carmel, Israel: The middle and upper Paleolithic archaeology, part 1. Cambridge: Peabody Museum of Archaeology and Ethnology.

    Google Scholar 

  • Mentzer, S. M. (2009). Bone as a fuel source: The effects of initial fragment size distribution. In I. Théry-Parisot, S. Costamagno, & A. Henry (Eds.), Gestion des Combustibles au Paleolithique et au Mesolithique: Nouveaux Outiles, Nouvelles Interpretations. UISPP Proceedings of the XV World Congress (Lisbon, 4–9 September 2006) (pp. 53–64). Oxford: Archaeopress (BAR International Series 1914).

    Google Scholar 

  • Mentzer, S. M. (2011). Macro- and micro-scale geoarchaeology of Üçağızlı Caves I and II, Hatay, Turkey. Unpublished dissertation, School of Anthropology, University of Arizona, Tucson.

  • Mentzer, S. M., & Quade, J. (in press). Short contribution: Compositional and isotopic analytical methods in archaeological micromorphology. Geoarchaeology, in press.

  • Miller, C., & Sievers, C. (2012). An experimental micromorphological investigation of bedding construction in the Middle Stone Age of Sibudu, South Africa. Journal of Archaeological Science, 39(10), 3039–3051.

    Google Scholar 

  • Miller, C., Conard, N. J., Goldberg, P., & Berna, F. (2009). Dumping, sweeping and trampling: Experimental micromorphological analysis of anthropogenically modified combustion features. P@lethnologie, 2009, 25–37.

    Google Scholar 

  • O’Connell, J. F. (1987). Alyawara site structure and its archaeological implications. American Antiquity, 52(1), 74–108.

    Google Scholar 

  • Parr, J. F. (2006). Effect of fire on phytolith coloration. Geoarchaeology, 21(2), 171–185.

    Google Scholar 

  • Pastó, I., Allué, E., & Vallverdú, J. (2000). Mousterian hearths at Abric Romaní, Catalonia (Spain). In C. B. Stringer, R. N. E. Barton, & J. C. Finlayson (Eds.), Neanderthals on the edge: Papers from a conference marking the 150th anniversary of the Forbes’ Quarry discovery, Gibraltar (pp. 59–67). Oxford: Oxbow Books.

    Google Scholar 

  • Perlès, C. (1981). Hearth and home in the Old Stone Age. Natural History, 90, 38–41.

    Google Scholar 

  • Quivira, M. P., & Dillehay, T. D. (1988). Monte Verde, South-Central Chile: Stratigraphy, climate change, and human settlement. Geoarchaeology, 3(3), 177–191.

    Google Scholar 

  • Regev, L., Poduska, K. M., Addadi, L., Weiner, S., & Boaretto, E. (2010). Distinguishing between calcites formed by different mechanisms using infrared spectrometry: Archaeological applications. Journal of Archaeological Science, 37(12), 3022–3029.

    Google Scholar 

  • Rigaud, J.-P., Simek, J. F., & Gé, T. (1995). Mousterian fires from Grotte XVI (Dordogne, France). Antiquity, 69, 902–912.

    Google Scholar 

  • Roebroeks, W., & Villa, P. (2011). On the earliest evidence for habitual use of fire in Europe. Proceedings of the National Academy of Sciences, 108(13), 5209–5214.

    Google Scholar 

  • Rogers, K. D., & Daniels, P. (2002). An X-ray diffraction study of the effects of heat treatment on bone mineral microstructure. Biomaterials, 23(12), 2577–2585.

    Google Scholar 

  • Sandgathe, D. M., Dibble, H. L., Goldberg, P., McPherron, S. P., Turq, A., & Niven, L. (2011). On the role of fire in Neanderthal adaptations in Western Europe: Evidence from Pech de l’Azé IV and Roc de Marsal, France. PaleoAnthropology, 2011, 216–242.

    Google Scholar 

  • Schiegl, S., & Conard, N. J. (2006). The Middle Stone Age sediments at Sibudu: Results from FTIR spectroscopy and microscopic analyses. Southern African Humanities, 18(1), 149–172.

    Google Scholar 

  • Schiegl, S., Lev-Yadun, S., Bar-Yosef, O., Goresy, A. E., & Weiner, S. (1994). Siliceous aggregates from prehistoric wood ash: A major component of sediments in Kebara and Hayonim caves (Israel). Israel Journal of Earth Sciences, 43(3–4), 257–278.

    Google Scholar 

  • Schiegl, S., Goldberg, P., Bar-Yosef, O., & Weiner, S. (1996). Ash deposits in Hayonim and Kebara Caves, Israel: Macroscopic, microscopic and mineralogical observations, and their archaeological implications. Journal of Archaeological Science, 23, 763–781.

    Google Scholar 

  • Schiegl, S., Goldberg, P., Pfretzschner, H.-U., & Conard, N. J. (2003). Paleolithic burnt bone horizons from the Swabian Jura: Distinguishing between in situ fireplaces and dumping areas. Geoarchaeology, 18(5), 541–565.

    Google Scholar 

  • Shahack-Gross, R., & Ayalon, A. (2012). Stable carbon and oxygen isotopic compositions of wood ash: an experimental study with archaeological implications. Journal of Archaeological Science. doi:10.1016/j.jas.2012.06.036.

  • Shahack-Gross, R., & Finkelstein, I. (2008). Subsistence practices in an arid environment: A geoarchaeological investigation in an Iron Age site, the Negev Highlands, Israel. Journal of Archaeological Science, 35(4), 965–982.

    Google Scholar 

  • Shahack-Gross, R., Bar-Yosef, O., & Weiner, S. (1997). Black-coloured bones in Hayonim Cave, Israel: Differentiating between burning and oxide staining. Journal of Archaeological Science, 24(5), 439–446.

    Google Scholar 

  • Shahack-Gross, R., Marshall, F., Ryan, K., & Weiner, S. (2004). Reconstruction of spatial organization in abandoned Maasai settlements: Implications for site structure in the Pastoral Neolithic of East Africa. Journal of Archaeological Science, 31(10), 1395–1411.

    Google Scholar 

  • Shahack-Gross, R., Ayalon, A., Goldberg, P., Goren, Y., Ofek, B., Rabinovich, R., et al. (2008). Formation processes of cemented features in karstic cave sites revealed using stable oxygen and carbon isotopic analyses: A case study at middle paleolithic Amud Cave, Israel. Geoarchaeology, 23(1), 43–62.

    Google Scholar 

  • Sherwood, S. C. (2001). The geoarchaeology of Dust Cave: A late Paleoindian through middle Archaic site in the western middle Tennessee River valley. Unpublished dissertation, The University of Tennessee, Knoxville.

  • Sherwood, S. (2008). Increasing the resolution of cave archaeology: Micromorphology and the classification of burned deposits at dust cave. In D. Dye (Ed.), Cave archaeology in the Eastern Woodlands: Papers in honor of Patty Jo Watson. Knoxville: University of Tennessee Press.

    Google Scholar 

  • Sherwood, S. C., & Chapman, J. (2005). The identification and potential significance of early Holocene prepared clay surfaces: Examples from Dust Cave and Icehouse Bottom. Southeastern Archaeology, 24(1), 70–82.

    Google Scholar 

  • Sherwood, S. C., Driskell, B. N., Randall, A. R., & Meeks, S. (2004). Chronology and stratigraphy at Dust Cave, Alabama. American Antiquity, 69(3), 533–554.

    Google Scholar 

  • Shipman, P., Foster, G., & Schoeninger, M. (1984). Burnt bones and teeth: An experimental study of color, morphology, crystal structure and shrinkage. Journal of Archaeological Science, 11(4), 307–325.

    Google Scholar 

  • Simms, S. R. (1988). The archaeological structure of a Bedouin camp. Journal of Archaeological Science, 15(2), 197–211.

    Google Scholar 

  • Simpson, I. A., Vésteinsson, O., Adderley, W. P., & McGovern, T. H. (2003). Fuel resource utilization in landscapes of settlement. Journal of Archaeological Science, 30, 1401–1420.

    Google Scholar 

  • Speth, J. D. (2006). Housekeeping, Neandertal-style: Hearth placement and midden formation in Kebara Cave (Israel). In E. Hovers & S. L. Kuhn (Eds.), Transitions before the transition: Evolution and stability in the Middle Paleolithic and Middle Stone Age (pp. 171–188). New York: Springer.

    Google Scholar 

  • Speth, J. D., Meignen, L., Bar-Yosef, O., & Goldberg, P. (2012). Spatial organization of Middle Paleolithic occupation X in Kebara Cave (Israel): Concentrations of animal bones. Quaternary International, 247, 85–102.

    Google Scholar 

  • Squires, K. E., Thompson, T. J. U., Islam, M., & Chamberlain, A. (2011). The application of histomorphometry and Fourier transform infrared spectroscopy to the analysis of early Anglo-Saxon burned bone. Journal of Archaeological Science, 38, 2399–2409.

    Google Scholar 

  • Stevenson, M. G. (1985). The formation of artifact assemblages at workshop/habitation sites: Models from Peace Point in Northern Alberta. American Antiquity, 50(1), 63–81.

    Google Scholar 

  • Stevenson, M. G. (1991). Beyond the formation of hearth-associated artifact assemblages. In E. M. Kroll & T. D. Price (Eds.), The interpretation of archaeological spatial patterning (pp. 269–299). New York: Plenum.

    Google Scholar 

  • Stewart, B. A., Dewar, G. I., Morley, M. W., Inglis, R. H., Wheeler, M., Jacobs, Z., et al. (2012). Afromontane foragers of the Late Pleistocene: Site formation, chronology and occupational pulsing at Melikane Rockshelter, Lesotho. Quaternary International. doi:10.1016/j.quaint.2011.11.028.

  • Stiner, M., Kuhn, S., Weiner, S., & Bar-Yosef, O. (1995). Differential burning, recrystallization, and fragmentation of archaeological bone. Journal of Archaeological Science, 22, 223–237.

    Google Scholar 

  • Stiner, M. C., Barkai, R., & Gopher, A. (2011). Hearth-side socioeconomics, hunting and paleocology during the late Lower Paleolithic at Qesem Cave, Israel. Journal of Human Evolution, 60(2), 213–233.

    Google Scholar 

  • Surovell, T. A., & Stiner, M. C. (2001). Standardizing infra-red measures of bone mineral crystallinity: An experimental approach. Journal of Archaeological Science, 28(6), 633–642.

    Google Scholar 

  • Taylor, G. H., Teichmüller, M., Davis, A., Diessel, C. F. K., Littke, R., & Robert, P. (1998). Organic petrology. Berlin: Gebrüder Bornträger.

    Google Scholar 

  • Théry, I., Gril, J., Vernet, J. L., Meignen, L., & Maury, J. (1996). Coal used for fuel at two prehistoric sites in southern France: Les Canalettes (Mousterian) and Les Usclades (Mesolithic). Journal of Archaeological Science, 23(4), 509–512.

    Google Scholar 

  • Théry-Parisot, I. (2002). Fuel management (bone and wood) during the Lower Aurignacian in the Pataud Rock Shelter (Lower Palaeolithic, Les Eyzies de Tayac, Dordogne, France). Contribution of experimentation. Journal of Archaeological Science, 29(12), 1415–1421.

    Google Scholar 

  • Théry-Parisot, I., Costamagno, S., Brugal, J. P., Fosse, P., & Guilbert, R. (2005). The use of bone as fuel during the Palaeolithic, experimental study of bone combustible properties. In J. Mulville & A. K. Outram (Eds.), The zooarchaeology of fats, oils, milk and dairying. Oxford: Oxbow Books.

  • Théry-Parisot, I., Chabal, L., & Chrzavzez, J. (2010). Anthracology and taphonomy, from wood gathering to charcoal analysis. A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeography, Palaeoclimatology, Palaeoecology, 291, 142–153.

    Google Scholar 

  • Thompson, T. J. U., Gauthier, M., & Islam, M. (2009). The application of a new method of Fourier transform infrared spectroscopy to the analysis of burned bone. Journal of Archaeological Science, 36, 910–914.

    Google Scholar 

  • Tsartsidou, G., Lev-Yadun, L., Albert, R. M., Miller-Rosen, A., Efstratiou, N., & Weiner, S. (2007). The phytolith archaeological record: Strengths and weaknesses evaluated based on quantitative modern reference collections from Greece. Journal of Archaeological Science, 34(8), 1262–1275.

    Google Scholar 

  • Tsatskin, A., & Nadel, D. (2003). Formation processes at the Ohalo II submerged prehistoric campsite, Israel, inferred from soil micromorphology and magnetic susceptibility studies. Geoarchaeology, 18(4), 409–432.

    Google Scholar 

  • Ulery, A. L., Graham, R. C., & Amrhein, C. (1993). Wood-ash composition and soil pH following intense burning. Soil Science, 156(5), 358–364.

    Google Scholar 

  • Vallverdu, J. (2002). Micromorfología de las facies sedimentarias de la colección de referencia de la Sierra de Atapuerca y del nivel J del AbricRomaní. Implicaciones geoarqueológicas y paleoetnográficas. Unpublished dissertation, Universitat Rovira i Virgili, Tarragona.

  • Vallverdú, J., Alluué, E., Bischoff, J. L., Cáceres, I., Carbonell, E., Cebria, A., et al. (2005). Short human occupations in the Middle Palaeolithic level I of the Abric Romaní rock-shelter (Capellades, Barcelona, Spain). Journal of Human Evolution, 48(2), 157–174.

    Google Scholar 

  • Vallverdú, J., Alonso, S., Bargalló, A., Bartrolí, R., Campeny, G., Carrancho, Á., et al. (2012). Combustion structures of archaeological level O and Mousterian activity areas with use of fire at the Abric Romaní rockshelter (NE Iberian Peninsula). Quaternary International, 247, 313–324.

    Google Scholar 

  • Vallverdú, J., Vaquero, M., Cáceres, I., Allué, E., Rosell, J., Saladié, P., et al. (2010). Sleeping activity area within the site structure of Archaic human groups: Evidence from Abric Romaní Level N combustion activity areas. Current Anthropology, 51(1), 137–145.

    Google Scholar 

  • van der Veen, M. (2007). Formation processes of desiccated and carbonized plant remains—The identification of routine practice. Journal of Archaeological Science, 34, 968–990.

    Google Scholar 

  • Vandiver, P. B., Soffer, O., Klima, B., & Svoboda, J. I. (1989). The origins of ceramic technology at Dolni Vestonice, Czechoslovakia. Science, 246(4933), 1002–1008.

    Google Scholar 

  • Vaquero, M., & Pastó, I. (2001). The definition of spatial units in Middle Palaeolithic Sites: The hearth-related assemblages. Journal of Archaeological Science, 28(11), 1209–1220.

    Google Scholar 

  • Villagran, X. S., Giannini, P. C. F., & DeBlasis, P. (2009). Archaeofacies analysis: Using depositional attributes to identify anthropic processes of deposition in a monumental shell mound of Santa Catarina State, southern Brazil. Geoarchaeology, 24(3), 311–335.

    Google Scholar 

  • Villagran, X., Balbo, A., Madella, M., Vila, A., & Estevez, J. (2011a). Stratigraphic and spatial variability in shell middens: Microfacies identification at the ethnohistoric site Tunel VII (Tierra del Fuego, Argentina). Archaeological and Anthropological Sciences, 3(4), 357–378.

    Google Scholar 

  • Villagran, X. S., Balbo, A. L., Madella, M., Vila, A., & Estevez, J. (2011b). Experimental micromorphology in Tierra del Fuego (Argentina): Building a reference collection for the study of shell middens in cold climates. Journal of Archaeological Science, 38(3), 588–604.

    Google Scholar 

  • Wadley, L. (2010). Cemented ash as a receptacle or work surface for ochre powder production at Sibudu, South Africa, 58,000 years ago. Journal of Archaeological Science, 37(10), 2397–2406.

    Google Scholar 

  • Wadley, L. (2012). Some combustion features at Sibudu, South Africa, between 65,000 and 58,000 years ago. Quaternary International, 247, 341–349.

    Google Scholar 

  • Wadley, L., Sievers, C., Bamford, M., Goldberg, P., Berna, F., & Miller, C. (2011). Middle Stone Age bedding construction and settlement patterns at Sibudu, South Africa. Science, 334, 1388–1391.

    Google Scholar 

  • Wattez, J. (1988). Contribution à la conaissance des foyers préhistoriques par l’étude des cendres. Bulletin de la Société Prehistorique de France, 85(10–12), 353–366.

    Google Scholar 

  • Wattez, J. (1992). Dynamique de formation des structures de combustion de la fin du Paléolitique au Néolitique moyen. Unpublished dissertation, Université de Paris I, Paris.

  • Wattez, J. (1994). Micromorphologie des foyers d’Etoilles, de Pincevent et de Verberie: Le milieu naturel et son exploitation. In Y. Taborin (Ed.), Environments et Habitats Magdaleniens dans le Centre du Bassin Parisien (pp. 120–127). Documents d’Archéologie Française 43, Paris.

  • Weiner, S. (2010). Microarchaeology: Beyond the visible archaeological record. Cambridge: Cambridge University Press.

    Google Scholar 

  • Weiner, S., Goldberg, P., & Bar-Yosef, O. (1993). Bone preservation in Kebara cave, Israel using on-site Fourier transform infrared spectrometry. Journal of Archaeological Science, 20, 613–627.

    Google Scholar 

  • Weiner, S., Xu, Q., Goldberg, P., Liu, J., & Bar-Yosef, O. (1998). Evidence for the use of fire at Zhoukoudian, China. Science, 281(5374), 251–253.

    Google Scholar 

  • Weiner, S., Goldberg, P., & Bar-Yosef, O. (2002). Three-dimensional distribution of minerals in the sediments of Hayonim Cave, Israel: Diagenetic processes and archaeological implications. Journal of Archaeological Science, 29, 1289–1308.

    Google Scholar 

  • Wrangham, R. W. (2007). The cooking enigma. In P. S. Ungar (Ed.), Evolution of the human diet: The known, the unknown, and the unknowable (pp. 308–323). Oxford: Oxford University Press.

    Google Scholar 

  • Wrangham, R. W. (2010). Catching fire: How cooking made us human. New York: Basic Books.

    Google Scholar 

  • Wrangham, R., & Carmody, R. (2010). Human adaptation to the control of fire. Evolutionary Anthropology: Issues, News, and Reviews, 19(5), 187–199.

    Google Scholar 

  • Wrangham, R. W., Jones, J. H., Laden, G., Pilbeam, D., & Conklin-Brittain, N. (1999). The raw and the stolen: Cooking and the ecology of human origins. Current Anthropology, 40(5), 567–594.

    Google Scholar 

  • Yellen, J. (1977). Archaeological approaches to the present. New York: Academic.

    Google Scholar 

  • Zerboni, A. (2011). Micromorphology reveals in situ Mesolithic living floors and archaeological features in multiphase sites in central Sudan. Geoarchaeology, 26(3), 365–391.

    Google Scholar 

Download references

Acknowledgments

The author is grateful to J. Quade, M. Stiner, P. Goldberg, and S. Kuhn for providing comments on earlier versions of this manuscript. Funding for research and a portion of the writing was provided, in part, by the PEO Foundation and the University of Arizona School of Anthropology Emil Haury Dissertation Improvement Grant. Support for micromorphological analyses and access to collections cited in this paper were provided by the Asıklı Höyük project funded by NSF grant no. BCS-0912148 to M. Stiner; the Mt. Lykaion Excavation and Survey Project, funded by donations from Nicholas and Athena Karabots, the Karabots Foundation and Annette Merle-Smith; the excavations at Pech de l’Azé IV funded by an NSF grant to H. Dibble, samples collected by P. Goldberg; the La Quina project, funded by an NSF grant to A. Jelinek, samples collected by T.D. Young; the excavations at Üçağızlı Caves I and II, funded by NSF grant nos. SBR-9804722, BCS-0106433, and BCS-0410654 and a Leakey Foundation Grant, samples collected by P. Goldberg. The author would also like to thank T. Manne and C. Miller for their insights on the topic and contributions to experimental combustion research and the three reviewers for their thoughtful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan M. Mentzer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mentzer, S.M. Microarchaeological Approaches to the Identification and Interpretation of Combustion Features in Prehistoric Archaeological Sites. J Archaeol Method Theory 21, 616–668 (2014). https://doi.org/10.1007/s10816-012-9163-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10816-012-9163-2

Keywords

Navigation