Skip to main content

Advertisement

Log in

Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances

  • REVIEW
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Uterine leiomyomas are common, benign, reproductive tract tumors affecting a majority of reproductive aged women. They are associated with gynecologic morbidity and detrimentally affect reproductive potential. The etiology of leiomyomas is poorly understood and their diagnosis prior to treatment with Assisted Reproductive Technologies (ART) represents a management dilemma. The purpose of this paper is to review known genetic and molecular contributions to the etiologies of leiomyomas, describe their impact on ART outcomes and reproductive potential, and review alternative therapies and future directions in management.

Methods

A critical review of the literature pertaining to genetic component of uterine leiomyomas, their impact on ART and pregnancy and leiomyoma therapeutics was performed.

Results

Uterine leiomyomas are characterized by complex molecular mechanisms. Their location and size determines their potential detriment to ART and reproductive function and novel therapeutic modalities are being developed.

Conclusion

The high prevalence of uterine leiomyomas and their potential detrimental influence on ART and reproductive function warrants continued well-designed studies to ascertain their etiology, optimal treatment and novel less morbid therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bowden W, Skorupski J, Kovanci E, Rajkovic A. Detection of novel copy number variants in uterine leiomyomas using high-resolution SNP arrays. Mol Hum Reprod. 2009;15:563–8.

    Article  PubMed  CAS  Google Scholar 

  2. Laughlin SK, Schroeder JC, Baird DD. New directions in the epidemiology of uterine fibroids. Semin Reprod Med. 2010;28:204–17.

    Article  PubMed  CAS  Google Scholar 

  3. Marino JL, Eskenazi B, Warner M, Samuels S, Vercellini P, Gavoni N, et al. Uterine leiomyoma and menstrual cycle characteristics in a population-based cohort study. Hum Reprod. 2004;19:2350–5.

    Article  PubMed  CAS  Google Scholar 

  4. Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22:571–88.

    Article  PubMed  Google Scholar 

  5. Payson M, Leppert P, Segars J. Epidemiology of myomas. Obstet Gynecol Clin North Am. 2006;33:1–11.

    Article  PubMed  Google Scholar 

  6. Kolankaya A, Arici A. Myomas and assisted reproductive technologies: when and how to act? Obstet Gynecol Clin North Am. 2006;33:145–52.

    Article  PubMed  Google Scholar 

  7. Ishikawa H, Reierstad S, Demura M, Rademaker AW, Kasai T, Inoue M, et al. High aromatase expression in uterine leiomyoma tissues of African-American women. J Clin Endocrinol Metab. 2009;94:1752–6.

    Article  PubMed  CAS  Google Scholar 

  8. Somigliana E, Vercellini P, Daguati R, Pasin R, De Giorgi O, Crosignani PG. Fibroids and female reproduction: a critical analysis of the evidence. Hum Reprod Update. 2007;13:465–76.

    Article  PubMed  CAS  Google Scholar 

  9. Hart R, Khalaf Y, Yeong CT, Seed P, Taylor A, Braude P. A prospective controlled study of the effect of intramural uterine fibroids on the outcome of assisted conception. Hum Reprod. 2001;16:2411–7.

    PubMed  CAS  Google Scholar 

  10. Khalaf Y, Ross C, El-Toukhy T, Hart R, Seed P, Braude P. The effect of small intramural uterine fibroids on the cumulative outcome of assisted conception. Hum Reprod. 2006;21:2640–4.

    Article  PubMed  CAS  Google Scholar 

  11. Oliveira FG, Abdelmassih VG, Diamond MP, Dozortsev D, Melo NR, Abdelmassih R. Impact of subserosal and intramural uterine fibroids that do not distort the endometrial cavity on the outcome of in vitro fertilization-intracytoplasmic sperm injection. Fertil Steril. 2004;81:582–7.

    Article  PubMed  Google Scholar 

  12. Klatsky PC, Lane DE, Ryan IP, Fujimoto VY. The effect of fibroids without cavity involvement on ART outcomes independent of ovarian age. Hum Reprod. 2007;22:521–6.

    Article  PubMed  CAS  Google Scholar 

  13. Horcajadas JA, Goyri E, Higon MA, Martinez-Conejero JA, Gambadauro P, Garcia G, et al. Endometrial receptivity and implantation are not affected by the presence of uterine intramural leiomyomas: a clinical and functional genomics analysis. J Clin Endocrinol Metab. 2008;93:3490–8.

    Article  PubMed  CAS  Google Scholar 

  14. Pritts EA. Fibroids and infertility: a systematic review of the evidence. Obstet Gynecol Surv. 2001;56:483–91.

    Article  PubMed  CAS  Google Scholar 

  15. Donnez J, Jadoul P. What are the implications of myomas on fertility? A need for a debate? Hum Reprod. 2002;17:1424–30.

    Article  PubMed  CAS  Google Scholar 

  16. Benecke C, Kruger TF, Siebert TI, Van der Merwe JP, Steyn DW. Effect of fibroids on fertility in patients undergoing assisted reproduction. A structured literature review. Gynecol Obstet Invest. 2005;59:225–30.

    Article  PubMed  CAS  Google Scholar 

  17. Pritts EA, Parker WH, Olive DL. Fibroids and infertility: an updated systematic review of the evidence. Fertil Steril. 2009;91:1215–23.

    Article  PubMed  Google Scholar 

  18. Sunkara SK, Khairy M, El-Toukhy T, Khalaf Y, Coomarasamy A. The effect of intramural fibroids without uterine cavity involvement on the outcome of IVF treatment: a systematic review and meta-analysis. Hum Reprod. 2010;25:418–29.

    Article  PubMed  Google Scholar 

  19. Somigliana E, De Benedictis S, Vercellini P, Nicolosi AE, Benaglia L, Scarduelli C, et al. Fibroids not encroaching the endometrial cavity and IVF success rate: a prospective study. Hum Reprod. 2011;26:834–9.

    Article  PubMed  Google Scholar 

  20. Cardozo ER, Clark AD, Banks NK, Henne MB, Stegmann BJ, Segars JH. The estimated annual cost of uterine leiomyomata in the United States. Am J Obstet Gynecol. 2012;206:211. e1–9.

    Article  PubMed  Google Scholar 

  21. Snieder H, MacGregor AJ, Spector TD. Genes control the cessation of a woman's reproductive life: a twin study of hysterectomy and age at menopause. J Clin Endocrinol Metab. 1998;83:1875–80.

    Article  PubMed  CAS  Google Scholar 

  22. Vikhlyaeva EM, Khodzhaeva ZS, Fantschenko ND. Familial predisposition to uterine leiomyomas. Int J Gynaecol Obstet. 1995;51:127–31.

    Article  PubMed  CAS  Google Scholar 

  23. Al-Hendy A, Salama SA. Ethnic distribution of estrogen receptor-alpha polymorphism is associated with a higher prevalence of uterine leiomyomas in black Americans. Fertil Steril. 2006;86:686–93.

    Article  PubMed  CAS  Google Scholar 

  24. Wei JJ, Chiriboga L, Arslan AA, Melamed J, Yee H, Mittal K. Ethnic differences in expression of the dysregulated proteins in uterine leiomyomata. Hum Reprod. 2006;21:57–67.

    Article  PubMed  Google Scholar 

  25. Amant F, Huys E, Geurts-Moespot A, Lindeque BG, Vergote I, Sweep F, et al. Ethnic variations in uterine leiomyoma biology are not caused by differences in myometrial estrogen receptor alpha levels. J Soc Gynecol Investig. 2003;10:105–9.

    Article  PubMed  CAS  Google Scholar 

  26. Pan Q, Luo X, Chegini N. Genomic and proteomic profiling I: leiomyomas in African Americans and Caucasians. Reprod Biol Endocrinol. 2007;5:34.

    Article  PubMed  CAS  Google Scholar 

  27. Gross KL, Morton CC. Genetics and the development of fibroids. Clin Obstet Gynecol. 2001;44:335–49.

    Article  PubMed  CAS  Google Scholar 

  28. Hodge JC, Cuenco KT, Huyck KL, Somasundaram P, Panhuysen CI, Stewart EA, et al. Uterine leiomyomata and decreased height: a common HMGA2 predisposition allele. Hum Genet. 2009;125:257–63.

    Article  PubMed  Google Scholar 

  29. Gattas GJ, Quade BJ, Nowak RA, Morton CC. HMGIC expression in human adult and fetal tissues and in uterine leiomyomata. Gene Chromosome Canc. 1999;25:316–22.

    Article  CAS  Google Scholar 

  30. Markowski DN, Helmke BM, Belge G, Nimzyk R, Bartnitzke S, Deichert U, et al. HMGA2 and p14Arf: major roles in cellular senescence of fibroids and therapeutic implications. Anticancer Res. 2011;31:753–61.

    PubMed  Google Scholar 

  31. Rein MS, Powell WL, Walters FC, Weremowicz S, Cantor RM, Barbieri RL, et al. Cytogenetic abnormalities in uterine myomas are associated with myoma size. Mol Hum Reprod. 1998;4:83–6.

    Article  PubMed  CAS  Google Scholar 

  32. Brosens I, Deprest J, Dal Cin P, Van den Berghe H. Clinical significance of cytogenetic abnormalities in uterine myomas. Fertil Steril. 1998;69:232–5.

    Article  PubMed  CAS  Google Scholar 

  33. Sudarshan S, Pinto PA, Neckers L, Linehan WM. Mechanisms of disease: hereditary leiomyomatosis and renal cell cancer–a distinct form of hereditary kidney cancer. Nat Clin Pract Urol. 2007;4:104–10.

    Article  PubMed  CAS  Google Scholar 

  34. Uliana V, Marcocci E, Mucciolo M, Meloni I, Izzi C, Manno C, et al. Alport syndrome and leiomyomatosis: the first deletion extending beyond COL4A6 intron 2. Pediatr Nephrol. 2011;26:717–24.

    Article  PubMed  Google Scholar 

  35. Walker CL, Stewart EA. Uterine fibroids: the elephant in the room. Science. 2005;308:1589–92.

    Article  PubMed  CAS  Google Scholar 

  36. Cha PC, Takahashi A, Hosono N, Low SK, Kamatani N, Kubo M, et al. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat Genet. 2011;43:447–50.

    Article  PubMed  CAS  Google Scholar 

  37. Rogers R, Norian J, Malik M, Christman G, Abu-Asab M, Chen F, et al. Mechanical homeostasis is altered in uterine leiomyoma. Am J Obstet Gynecol. 2008;198:474. e1–11.

    Article  PubMed  Google Scholar 

  38. Makinen N, Mehine M, Tolvanen J, Kaasinen E, Li Y, Lehtonen HJ, et al. MED12, the mediator complex subunit 12 gene, is mutated at high frequency in uterine leiomyomas. Science. 2011;334:252–5.

    Article  PubMed  CAS  Google Scholar 

  39. Kang YK, Guermah M, Yuan CX, Roeder RG. The TRAP/Mediator coactivator complex interacts directly with estrogen receptors alpha and beta through the TRAP220 subunit and directly enhances estrogen receptor function in vitro. Proc Natl Acad Sci U S A. 2002;99:2642–7.

    Article  PubMed  CAS  Google Scholar 

  40. Leppert PC, Catherino WH, Segars JH. A new hypothesis about the origin of uterine fibroids based on gene expression profiling with microarrays. Am J Obstet Gynecol. 2006;195:415–20.

    Article  PubMed  CAS  Google Scholar 

  41. Kogan EA, Ignatova VE, Rukhadze TN, Kudrina EA, Ishchenko AI. A role of growth factors in development of various histological types of uterine leiomyoma. Arkh Patol. 2005;67:34–8. Article in Russian.

    PubMed  CAS  Google Scholar 

  42. Chegini N. Proinflammatory and profibrotic mediators: principal effectors of leiomyoma development as a fibrotic disorder. Semin Reprod Med. 2010;28:180–203.

    Article  PubMed  CAS  Google Scholar 

  43. Malik M, Norian J, McCarthy-Keith D, Britten J, Catherino WH. Why leiomyomas are called fibroids: the central role of extracellular matrix in symptomatic women. Semin Reprod Med. 2010;28:169–79.

    Article  PubMed  Google Scholar 

  44. Chegini N, Zhao Y, Williams RS, Flanders KC. Human uterine tissue throughout the menstrual cycle expresses transforming growth factor-beta 1 (TGF beta 1), TGF beta 2, TGF beta 3, and TGF beta type II receptor messenger ribonucleic acid and protein and contains [125I]TGF beta 1-binding sites. Endocrinology. 1994;135:439–49.

    Article  PubMed  CAS  Google Scholar 

  45. Sozen I, Arici A. Interactions of cytokines, growth factors, and the extracellular matrix in the cellular biology of uterine leiomyomata. Fertil Steril. 2002;78:1–12.

    Article  PubMed  Google Scholar 

  46. Norian JM, Malik M, Parker CY, Joseph D, Leppert PC, Segars JH, et al. Transforming growth factor beta3 regulates the versican variants in the extracellular matrix-rich uterine leiomyomas. Reprod Sci. 2009;16:1153–64.

    Article  PubMed  CAS  Google Scholar 

  47. Joseph DS, Malik M, Nurudeen S, Catherino WH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor beta-3. Fertil Steril. 2010;93:1500–8.

    Article  PubMed  CAS  Google Scholar 

  48. Laping NJ, Everitt JI, Frazier KS, Burgert M, Portis MJ, Cadacio C, et al. Tumor-specific efficacy of transforming growth factor-beta RI inhibition in Eker rats. Clin Cancer Res. 2007;13:3087–99.

    Article  PubMed  CAS  Google Scholar 

  49. Malik M, Webb J, Catherino WH. Retinoic acid treatment of human leiomyoma cells transformed the cell phenotype to one strongly resembling myometrial cells. Clin Endocrinol (Oxf). 2008;69:462–70.

    Article  CAS  Google Scholar 

  50. Asada H, Yamagata Y, Taketani T, Matsuoka A, Tamura H, Hattori N, et al. Potential link between estrogen receptor-alpha gene hypomethylation and uterine fibroid formation. Mol Hum Reprod. 2008;14:539–45.

    Article  PubMed  CAS  Google Scholar 

  51. Yamagata Y, Maekawa R, Asada H, Taketani T, Tamura I, Tamura H, et al. Aberrant DNA methylation status in human uterine leiomyoma. Mol Hum Reprod. 2009;15:259–67.

    Article  PubMed  CAS  Google Scholar 

  52. Bajekal N, Li TC. Fibroids, infertility and pregnancy wastage. Hum Reprod Update. 2000;6:614–20.

    Article  PubMed  CAS  Google Scholar 

  53. Gianaroli L, Gordts S, D'Angelo A, Magli MC, Brosens I, Cetera C, et al. Effect of inner myometrium fibroid on reproductive outcome after IVF. Reprod Biomed Online. 2005;10:473–7.

    Article  PubMed  Google Scholar 

  54. Eldar-Geva T, Meagher S, Healy DL, MacLachlan V, Breheny S, Wood C. Effect of intramural, subserosal, and submucosal uterine fibroids on the outcome of assisted reproductive technology treatment. Fertil Steril. 1998;70:687–91.

    Article  PubMed  CAS  Google Scholar 

  55. Farhi J, Ashkenazi J, Feldberg D, Dicker D, Orvieto R, Ben Rafael Z. Effect of uterine leiomyomata on the results of in-vitro fertilization treatment. Hum Reprod. 1995;10:2576–8.

    Article  PubMed  CAS  Google Scholar 

  56. Klatsky PC, Tran ND, Caughey AB, Fujimoto VY. Fibroids and reproductive outcomes: a systematic literature review from conception to delivery. Am J Obstet Gynecol. 2008;198:357–66.

    Article  PubMed  Google Scholar 

  57. Cook H, Ezzati M, Segars JH, McCarthy K. The impact of uterine leiomyomas on reproductive outcomes. Minerva Ginecol. 2010;62:225–36.

    PubMed  CAS  Google Scholar 

  58. Bosteels J, Weyers S, Puttemans P, Panayotidis C, Van Herendael B, Gomel V, et al. The effectiveness of hysteroscopy in improving pregnancy rates in subfertile women without other gynaecological symptoms: a systematic review. Hum Reprod Update. 2010;16:1–11.

    Article  PubMed  Google Scholar 

  59. Stovall DW, Parrish SB, Van Voorhis BJ, Hahn SJ, Sparks AE, Syrop CH. Uterine leiomyomas reduce the efficacy of assisted reproduction cycles: results of a matched follow-up study. Hum Reprod. 1998;13:192–7.

    Article  PubMed  CAS  Google Scholar 

  60. Healy DL. Impact of uterine fibroids on ART outcome. Environ Health Perspect. 2000;108 Suppl 5:845–7.

    PubMed  Google Scholar 

  61. Laughlin SK, Baird DD, Savitz DA, Herring AH, Hartmann KE. Prevalence of uterine leiomyomas in the first trimester of pregnancy: an ultrasound-screening study. Obstet Gynecol. 2009;113:630–5.

    PubMed  Google Scholar 

  62. Strobelt N, Ghidini A, Cavallone M, Pensabene I, Ceruti P, Vergani P. Natural history of uterine leiomyomas in pregnancy. J Ultrasound Med. 1994;13:399–401.

    PubMed  CAS  Google Scholar 

  63. Rice JP, Kay HH, Mahony BS. The clinical significance of uterine leiomyomas in pregnancy. Am J Obstet Gynecol. 1989;160:1212–6.

    PubMed  CAS  Google Scholar 

  64. Buttram Jr VC, Reiter RC. Uterine leiomyomata: etiology, symptomatology, and management. Fertil Steril. 1981;36:433–45.

    PubMed  Google Scholar 

  65. Lumbiganon P, Rugpao S, Phandhu-fung S, Laopaiboon M, Vudhikamraksa N, Werawatakul Y. Protective effect of depot-medroxyprogesterone acetate on surgically treated uterine leiomyomas: a multicentre case–control study. Br J Obstet Gynaecol. 1996;103:909–14.

    Article  PubMed  CAS  Google Scholar 

  66. Sheiner E, Bashiri A, Levy A, Hershkovitz R, Katz M, Mazor M. Obstetric characteristics and perinatal outcome of pregnancies with uterine leiomyomas. J Reprod Med. 2004;49:182–6.

    PubMed  Google Scholar 

  67. Saravelos SH, Yan J, Rehmani H, Li TC. The prevalence and impact of fibroids and their treatment on the outcome of pregnancy in women with recurrent miscarriage. Hum Reprod. 2011;26:3274–9.

    Article  PubMed  Google Scholar 

  68. Benson CB, Chow JS, Chang-Lee W, Hill 3rd JA, Doubilet PM. Outcome of pregnancies in women with uterine leiomyomas identified by sonography in the first trimester. J Clin Ultrasound. 2001;29:261–4.

    Article  PubMed  CAS  Google Scholar 

  69. Li TC, Mortimer R, Cooke ID. Myomectomy: a retrospective study to examine reproductive performance before and after surgery. Hum Reprod. 1999;14:1735–40.

    Article  PubMed  CAS  Google Scholar 

  70. Vercellini P, Maddalena S, De Giorgi O, Pesole A, Ferrari L, Crosignani PG. Determinants of reproductive outcome after abdominal myomectomy for infertility. Fertil Steril. 1999;72:109–14.

    Article  PubMed  CAS  Google Scholar 

  71. Marchionni M, Fambrini M, Zambelli V, Scarselli G, Susini T. Reproductive performance before and after abdominal myomectomy: a retrospective analysis. Fertil Steril. 2004;82:154–9.

    Article  PubMed  Google Scholar 

  72. Campo S, Campo V, Gambadauro P. Reproductive outcome before and after laparoscopic or abdominal myomectomy for subserous or intramural myomas. Eur J Obstet Gynecol Reprod Biol. 2003;110:215–9.

    Article  PubMed  Google Scholar 

  73. Vergani P, Locatelli A, Ghidini A, Andreani M, Sala F, Pezzullo JC. Large uterine leiomyomata and risk of cesarean delivery. Obstet Gynecol. 2007;109:410–4.

    Article  PubMed  Google Scholar 

  74. Coronado GD, Marshall LM, Schwartz SM. Complications in pregnancy, labor, and delivery with uterine leiomyomas: a population-based study. Obstet Gynecol. 2000;95:764–9.

    Article  PubMed  CAS  Google Scholar 

  75. Roberts WE, Fulp KS, Morrison JC, Martin Jr JN. The impact of leiomyomas on pregnancy. Aust N Z J Obstet Gynaecol. 1999;39:43–7.

    Article  PubMed  CAS  Google Scholar 

  76. Vergani P, Ghidini A, Strobelt N, Roncaglia N, Locatelli A, Lapinski RH, et al. Do uterine leiomyomas influence pregnancy outcome? Am J Perinatol. 1994;11:356–8.

    Article  PubMed  CAS  Google Scholar 

  77. Davis JL, Ray-Mazumder S, Hobel CJ, Baley K, Sassoon D. Uterine leiomyomas in pregnancy: a prospective study. Obstet Gynecol. 1990;75:41–4.

    PubMed  CAS  Google Scholar 

  78. Qidwai GI, Caughey AB, Jacoby AF. Obstetric outcomes in women with sonographically identified uterine leiomyomata. Obstet Gynecol. 2006;107:376–82.

    Article  PubMed  Google Scholar 

  79. Shavell VI, Thakur M, Sawant A, Kruger ML, Jones TB, Singh M, et al. Adverse obstetric outcomes associated with sonographically identified large uterine fibroids. Fertil Steril. 2012;97:107–10.

    Article  PubMed  Google Scholar 

  80. Stout MJ, Odibo AO, Graseck AS, Macones GA, Crane JP, Cahill AG. Leiomyomas at routine second-trimester ultrasound examination and adverse obstetric outcomes. Obstet Gynecol. 2010;116:1056–63.

    Article  PubMed  Google Scholar 

  81. Seracchioli R, Rossi S, Govoni F, Rossi E, Venturoli S, Bulletti C, et al. Fertility and obstetric outcome after laparoscopic myomectomy of large myomata: a randomized comparison with abdominal myomectomy. Hum Reprod. 2000;15:2663–8.

    Article  PubMed  CAS  Google Scholar 

  82. Campo S, Garcea N. Laparoscopic myomectomy in premenopausal women with and without preoperative treatment using gonadotrophin-releasing hormone analogues. Hum Reprod. 1999;14:44–8.

    Article  PubMed  CAS  Google Scholar 

  83. Miller CE, Johnston M, Rundell M. Laparoscopic myomectomy in the infertile woman. J Am Assoc Gynecol Laparosc. 1996;3:525–32.

    Article  PubMed  CAS  Google Scholar 

  84. Abramovici H, Dirnfeld M, Auslander R, Bornstein J, Blumenfeld Z, Sorokin Y. Pregnancies following treatment by GnRH-a (Decapeptyl) and myomectomy in infertile women with uterine leiomyomata. Int J Fertil Menopausal Stud. 1994;39:150–5.

    PubMed  CAS  Google Scholar 

  85. Surrey ES, Minjarez DA, Stevens JM, Schoolcraft WB. Effect of myomectomy on the outcome of assisted reproductive technologies. Fertil Steril. 2005;83:1473–9.

    Article  PubMed  Google Scholar 

  86. Bulletti C, Dez D, Levi Setti P, Cicinelli E, Polli V, Stefanetti M. Myomas, pregnancy outcome, and in vitro fertilization. Ann N Y Acad Sci. 2004;1034:84–92.

    Article  PubMed  Google Scholar 

  87. Narayan R, Rajat, Goswamy K. Treatment of submucous fibroids, and outcome of assisted conception. J Am Assoc Gynecol Laparosc. 1994;1:307–11.

    Article  PubMed  CAS  Google Scholar 

  88. Varasteh NN, Neuwirth RS, Levin B, Keltz MD. Pregnancy rates after hysteroscopic polypectomy and myomectomy in infertile women. Obstet Gynecol. 1999;94:168–71.

    Article  PubMed  CAS  Google Scholar 

  89. Goldberg J, Pereira L. Pregnancy outcomes following treatment for fibroids: uterine fibroid embolization versus laparoscopic myomectomy. Curr Opin Obstet Gynecol. 2006;18:402–6.

    Article  PubMed  Google Scholar 

  90. Gupta JK, Sinha AS, Lumsden MA, Hickey M. Uterine artery embolization for symptomatic uterine fibroids. Cochrane Database Syst Rev 2006;1:CD005073.

    Google Scholar 

  91. Edwards RD, Moss JG, Lumsden MA, Wu O, Murray LS, Twaddle S, et al. Uterine-artery embolization versus surgery for symptomatic uterine fibroids. N Engl J Med. 2007;356:360–70.

    Article  PubMed  CAS  Google Scholar 

  92. Moss JG, Cooper KG, Khaund A, Murray LS, Murray GD, Wu O, et al. Randomised comparison of uterine artery embolisation (UAE) with surgical treatment in patients with symptomatic uterine fibroids (REST trial): 5-year results. BJOG. 2011;118:936–44.

    Article  PubMed  CAS  Google Scholar 

  93. American Society of Reproductive Medicine (ASRM). Myomas and reproductive function. Fertil Steril. 2008;90:S125–S30.

    Google Scholar 

  94. Goldberg J. Pregnancy after uterine artery embolization for leiomyomata: the Ontario Multicenter Trial. Obstet Gynecol. 2005;106:195–6.

    Article  PubMed  Google Scholar 

  95. Firouznia K, Ghanaati H, Sanaati M, Jalali AH, Shakiba M. Pregnancy after uterine artery embolization for symptomatic fibroids: a series of 15 pregnancies. Am J Roentgenol. 2009;192:1588–92.

    Article  Google Scholar 

  96. Homer H, Saridogan E. Uterine artery embolization for fibroids is associated with an increased risk of miscarriage. Fertil Steril. 2010;94:324–30.

    Article  PubMed  Google Scholar 

  97. Holub Z, Mara M, Kuzel D, Jabor A, Maskova J, Eim J. Pregnancy outcomes after uterine artery occlusion: prospective multicentric study. Fertil Steril. 2008;90:1886–91.

    Article  PubMed  Google Scholar 

  98. Goldberg J, Pereira L, Berghella V, Diamond J, Darai E, Seinera P, et al. Pregnancy outcomes after treatment for fibromyomata: uterine artery embolization versus laparoscopic myomectomy. Am J Obstet Gynecol. 2004;191:18–21.

    Article  PubMed  Google Scholar 

  99. Tropeano G, Litwicka K, Di Stasi C, Romano D, Mancuso S. Permanent amenorrhea associated with endometrial atrophy after uterine artery embolization for symptomatic uterine fibroids. Fertil Steril. 2003;79:132–5.

    Article  PubMed  Google Scholar 

  100. Mara M, Maskova J, Fucikova Z, Kuzel D, Belsan T, Sosna O. Midterm clinical and first reproductive results of a randomized controlled trial comparing uterine fibroid embolization and myomectomy. Cardiovasc Interv Radiol. 2008;31:73–85.

    Article  Google Scholar 

  101. Hindley J, Gedroyc WM, Regan L, Stewart E, Tempany C, Hynnen K, et al. MRI guidance of focused ultrasound therapy of uterine fibroids: early results. Am J Roentgenol. 2004;183:1713–9.

    Google Scholar 

  102. Kim HS, Baik JH, Pham LD, Jacobs MA. MR-guided high-intensity focused ultrasound treatment for symptomatic uterine leiomyomata: long-term outcomes. Acad Radiol. 2011;18:970–6.

    Article  PubMed  Google Scholar 

  103. Rabinovici J, David M, Fukunishi H, Morita Y, Gostout BS, Stewart EA, et al. Pregnancy outcome after magnetic resonance-guided focused ultrasound surgery (MRgFUS) for conservative treatment of uterine fibroids. Fertil Steril. 2010;93:199–209.

    Article  PubMed  Google Scholar 

  104. Tropeano G, Amoroso S, Scambia G. Non-surgical management of uterine fibroids. Hum Reprod Update. 2008;14:259–74.

    Article  PubMed  Google Scholar 

  105. Lethaby A, Vollenhoven B, Sowter M. Pre-operative GnRH analogue therapy before hysterectomy or myomectomy for uterine fibroids. Cochrane Database Syst Rev 2001;2:CD000547.

    Google Scholar 

  106. Feng C, Meldrum S, Fiscella K. Improved quality of life is partly explained by fewer symptoms after treatment of fibroids with mifepristone. Int J Gynaecol Obstet. 2010;109:121–4.

    Article  PubMed  CAS  Google Scholar 

  107. Engman M, Granberg S, Williams AR, Meng CX, Lalitkumar PG, Gemzell-Danielsson K. Mifepristone for treatment of uterine leiomyoma. A prospective randomized placebo controlled trial. Hum Reprod. 2009;24:1870–9.

    Article  PubMed  CAS  Google Scholar 

  108. Bagaria M, Suneja A, Vaid NB, Guleria K, Mishra K. Low-dose mifepristone in treatment of uterine leiomyoma: a randomised double-blind placebo-controlled clinical trial. Aust N Z J Obstet Gynaecol. 2009;49:77–83.

    Article  PubMed  Google Scholar 

  109. Chwalisz K, Larsen L, Mattia-Goldberg C, Edmonds A, Elger W, Winkel CA. A randomized, controlled trial of asoprisnil, a novel selective progesterone receptor modulator, in women with uterine leiomyomata. Fertil Steril. 2007;87:1399–412.

    Article  PubMed  CAS  Google Scholar 

  110. Esteve JL, Acosta R, Perez Y, Campos R, Hernandez AV, Texido CS. Treatment of uterine myoma with 5 or 10 mg mifepristone daily during 6 months, post-treatment evolution over 12 months: double-blind randomised clinical trial. Eur J Obstet Gynecol Reprod Biol. 2012;161:202–8.

    Google Scholar 

  111. Levens ED, Potlog-Nahari C, Armstrong AY, Wesley R, Premkumar A, Blithe DL, et al. CDB-2914 for uterine leiomyomata treatment: a randomized controlled trial. Obstet Gynecol. 2008;111:1129–36.

    Article  PubMed  CAS  Google Scholar 

  112. Nieman LK, Blocker W, Nansel T, Mahoney S, Reynolds J, Blithe D, et al. Efficacy and tolerability of CDB-2914 treatment for symptomatic uterine fibroids: a randomized, double-blind, placebo-controlled, phase IIb study. Fertil Steril. 2011;95:767–72. e1–2.

    Article  PubMed  CAS  Google Scholar 

  113. Donnez J, Tomaszewski J, Vazquez F, Bouchard P, Lemieszczuk B, Baro F, et al. Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med. 2012;366:421–32.

    Article  PubMed  CAS  Google Scholar 

  114. Donnez J, Tatarchuk TF, Bouchard P, Puscasiu L, Zakharenko NF, Ivanova T, et al. Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med. 2012;366:409–20.

    Article  PubMed  CAS  Google Scholar 

  115. Kettel LM, Murphy AA, Morales AJ, Ulmann A, Baulieu EE, Yen SS. Treatment of endometriosis with the antiprogesterone mifepristone (RU486). Fertil Steril. 1996;65:23–8.

    PubMed  CAS  Google Scholar 

  116. Chabbert-Buffet N, Pintiaux-Kairis A, Bouchard P. Effects of the progesterone receptor modulator VA2914 in a continuous low dose on the hypothalamic-pituitary-ovarian axis and endometrium in normal women: a prospective, randomized, placebo-controlled trial. J Clin Endocrinol Metab. 2007;92:3582–9.

    Article  PubMed  CAS  Google Scholar 

  117. Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, et al. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Invest. 2006;24:727–33.

    Article  PubMed  CAS  Google Scholar 

  118. Eisinger SH, Bonfiglio T, Fiscella K, Meldrum S, Guzick DS. Twelve-month safety and efficacy of low-dose mifepristone for uterine myomas. J Minim Invasive Gynecol. 2005;12:227–33.

    Article  PubMed  Google Scholar 

  119. Mutter GL, Bergeron C, Deligdisch L, Ferenczy A, Glant M, Merino M, et al. The spectrum of endometrial pathology induced by progesterone receptor modulators. Mod Pathol. 2008;21:591–8.

    Article  PubMed  CAS  Google Scholar 

  120. Ioffe OB, Zaino RJ, Mutter GL. Endometrial changes from short-term therapy with CDB-4124, a selective progesterone receptor modulator. Mod Pathol. 2009;22:450–9.

    Article  PubMed  CAS  Google Scholar 

  121. Spitz IM. Clinical utility of progesterone receptor modulators and their effect on the endometrium. Curr Opin Obstet Gynecol. 2009;21:318–24.

    Article  PubMed  Google Scholar 

  122. Eisinger SH, Fiscella J, Bonfiglio T, Meldrum S, Fiscella K. Open-label study of ultra low-dose mifepristone for the treatment of uterine leiomyomata. Eur J Obstet Gynecol Reprod Biol. 2009;146:215–8.

    Article  PubMed  CAS  Google Scholar 

  123. Parsanezhad ME, Azmoon M, Alborzi S, Rajaeefard A, Zarei A, Kazerooni T, et al. A randomized, controlled clinical trial comparing the effects of aromatase inhibitor (letrozole) and gonadotropin-releasing hormone agonist (triptorelin) on uterine leiomyoma volume and hormonal status. Fertil Steril. 2010;93:192–8.

    Article  PubMed  CAS  Google Scholar 

  124. Catherino WH, Malik M. Uterine leiomyomas express a molecular pattern that lowers retinoic acid exposure. Fertil Steril. 2007;87:1388–98.

    Article  PubMed  CAS  Google Scholar 

  125. Zaitseva M, Vollenhoven BJ, Rogers PA. Retinoic acid pathway genes show significantly altered expression in uterine fibroids when compared with normal myometrium. Mol Hum Reprod. 2007;13:577–85.

    Article  PubMed  CAS  Google Scholar 

  126. Ben-Sasson H, Ben-Meir A, Shushan A, Karra L, Rojansky N, Klein BY, et al. All-trans-retinoic acid mediates changes in PI3K and retinoic acid signaling proteins of leiomyomas. Fertil Steril. 2011;95:2080–6.

    Article  PubMed  CAS  Google Scholar 

  127. Malik M, Mendoza M, Payson M, Catherino WH. Curcumin, a nutritional supplement with antineoplastic activity, enhances leiomyoma cell apoptosis and decreases fibronectin expression. Fertil Steril. 2009;91:2177–84.

    Article  PubMed  CAS  Google Scholar 

  128. Zhang D, Al-Hendy M, Richard-Davis G, Montgomery-Rice V, Sharan C, Rajaratnam V, et al. Green tea extract inhibits proliferation of uterine leiomyoma cells in vitro and in nude mice. Am J Obstet Gynecol. 2010;202:289.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary Levy.

Additional information

Capsule

Uterine leiomyomas are highly prevalent reproductive tract tumors. Their morbidity is dependent of their size and location and the detriment on ART and reproductive function warrants continued studies to investigate their etiology, optimal treatment and novel therapies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levy, G., Hill, M.J., Beall, S. et al. Leiomyoma: genetics, assisted reproduction, pregnancy and therapeutic advances. J Assist Reprod Genet 29, 703–712 (2012). https://doi.org/10.1007/s10815-012-9784-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-012-9784-0

Keywords

Navigation