Skip to main content
Log in

Features of the Interaction of Hydroxyl and Methyl Tops in the Ethanol Molecule: 2D-Calculation of the Torsion Energy Levels

  • Published:
Journal of Applied Spectroscopy Aims and scope

Geometric parameters and vibrational spectra of the trans- and gauche-conformers of the ethanol molecule were calculated using the B3LYP/cc-pVQZ and B3LYP/acc-pVQZ approximations. 2D potential energy surfaces for internal rotation of the hydroxyl and methyl tops were built. Kinetic parameters associated with torsion coordinates were calculated using Wilson’s s vectors at the same 2D grid nodes at which the potential energy values were found. Features of the kinematic and force interaction of the two tops were analyzed. Energies of torsion levels and frequencies of torsional vibrations of CH 3 and OH groups were calculated. Good agreement between the calculated (199.8 cm −1 ) and experimental (202.6 cm −1 ) values for the fundamental frequency of OH torsional vibrations was achieved. Essential differences in the corresponding values for the fundamental torsional vibrations of CH 3 groups were analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Pitsevich, I. Yu. Doroshenko, V. E. Pogorelov, E. N. Kozlovskaya, T. Borzda, V. Shablinskas, and V. Balevicius, Vib. Spectrosc., 72, 26–32 (2014).

    Article  Google Scholar 

  2. I. Doroshenko, G. Pitsevich, V. Shablinskas, and V. E. Pogorelov, Cluster Structure of Liquid Alcohols [in Russian], LAPLAMBERT Academic Publishing, Germany (2012).

    Google Scholar 

  3. M. A. Suhm, Adv. Chem. Phys., 142, 1–58 (2009).

    Google Scholar 

  4. L. Chen, W. Zhu, K. Lin, N. Hu, Y. Yu, X. Zhou, L.-F.Yuan, S.-M. Hu, and Y. Luo, J. Phys. Chem. A, 119, 3209–3217 (2015); DOI: 10.1021/jp513027r.

    Article  Google Scholar 

  5. T. N. Wassermann and M. A. Suhm, J. Phys. Chem. A, 114, 8223–8233 (2010).

    Article  Google Scholar 

  6. F. Kollipost, K. Papendorf, Y.-F. Lee, Y.-P. Lee, and M. A. Suhm, Phys. Chem. Chem. Phys., 16, 15948–15956 (2014).

    Article  Google Scholar 

  7. J. Altnoder, K. Kruger, D. Borodin, L. Reuter, D. Rohleder, F. Hecker, R. A. Schulz, X. T. Nguyen, H. Preib, M. Eckhoff, M. Levien, and M. A. Suhm, Chem. Rec., 14, 1116–1133 (2014).

    Article  Google Scholar 

  8. A. Vasileva, P. Golub, I. Doroshenko, V. Pogorelov, V. Sablinskas, and V. Balevicius, J. Ceponkus Dataset Paper, 13 (2014).

  9. G. A. Pitsevich, I. Yu. Doroshenko, V. E. Pogorelov, V. Shablinskas, V. Balevicius, and E. N. Kozlovskaya, Am. J. Chem., 2, 218–227 (2012).

    Article  Google Scholar 

  10. G. A. Pitsevich, I. Yu. Doroshenko, V. E. Pogorelov, V. Shablinskas, and V. Balevicius, Low Temp. Phys., 39, 389–400 (2013).

    Article  ADS  Google Scholar 

  11. J. R. Durig and R. A. Larsen, J. Mol. Struct., 238, 195–222 (1989).

    Article  ADS  Google Scholar 

  12. M. L. Senent, Y. G. Smeyers, R. Dominguez-Gomez, and M. Villa, J. Chem. Phys., 112, 5809–5819 (2000).

    Article  ADS  Google Scholar 

  13. E. B. Wilson, J. J. C. Decius, and P. C. Cross, Molecular Vibration, Dover Publications Inc., New York (1955).

    Google Scholar 

  14. http://www.msg.ameslab.gov/GAMESS/GAMESS.html

  15. H. Yoshida, K. Takeda, and J. Okamura, J. Phys. Chem. A, 106, 3580–3586 (2002).

    Article  Google Scholar 

  16. T. H. Dunning, J. Chem. Phys., 90, 1007–1023 (1989).

    Article  ADS  Google Scholar 

  17. J. C. Pearson, C. S. Brauer, and B. J. Drouin, J. Mol. Spectrosc., 251, 394–409 (2008).

    Article  ADS  Google Scholar 

  18. G. Pitsevich and V. Balevicius, J. Mol. Struct., 1072, 38–44 (2014).

    Article  ADS  Google Scholar 

  19. G. A. Pitsevich, A. E. Malevich, E. N. Kozlovskaya, Yu. Doroshenko, V. E. Pogorelov, V. Shablinskas, and V. Balevicius, Spectrochim. Acta, Part A, 145, 384–393 (2015).

    Article  ADS  Google Scholar 

  20. Mathematica, Wolfram Research Inc.; http://www.wolfram.com.mathematica/.

  21. B. Podolsky, Phys. Rev., 32, 812–816 (1928).

    Article  MATH  ADS  Google Scholar 

  22. G. A. Pitsevich and A. E. Malevich, Opt. Photon J., 2, 332–337 (2012).

    Article  ADS  Google Scholar 

  23. G. A. Pitsevich, A. E. Malevich, I. Yu. Doroshenko, E. N. Kozlovskaya, V. E. Pogorelov, V. Shablinskas, and V. Balevicius, Spectrochim. Acta, Part A, 120, 585–594 (2014).

    Article  Google Scholar 

  24. V. V. Sivchik and K. M. Grushetskii, Zh. Prikl. Spektrosk., 19, No. 2, 317–319 (1973) [V. V. Sivchik and K. M. Grushetskii, J. Appl. Spectrosc., 19, No. 2, 1062–1063 (1973)].

  25. G. A. Pitsevich, M. Shundalau, M. A. Ksenofontov, and D. S. Umreiko, J. Anal. Chem., 2, 114–124 (2011).

    Google Scholar 

  26. G. A. Pitsevich and A. E. Malevich, Am. J. Chem., 2, 312–321 (2012).

    Article  Google Scholar 

  27. G. A. Pitsevich, I. Yu. Doroshenko, V. Y. Pogorelov, and D. S. Umreiko, J. Spectrosc. Dyn., 1:9 (2011).

    Google Scholar 

  28. G. A. Pitsevich, A. V. Kostopravova, D. S. Umreiko, and M. A. Ksenofontov, Zh. Prikl. Spektrosk., 78, No. 5, 661–667 (2011) [G. A. Pitsevich, A. V. Kostopravova, D. S. Umreiko, and M. A. Ksenofontov, J. Appl. Spectrosc., 78, No. 5, 617–623 (2011)].

  29. G. A. Pitsevich, J. Spectrosc. Dyn., 2, 13 (2012).

    Google Scholar 

  30. S. Coussan, Y. Bouteiller, J. P. Perchard, and W. Q. Zheng, J. Phys. Chem. A, 102, 5789–5793 (1998).

    Article  Google Scholar 

  31. A. J. Barnes and H. E. Hallam, Trans. Faraday Soc., 66, 1932–1940 (1970).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pitsevich.

Additional information

Translated from Zhurnal Prikladnoi Spektroskopii, Vol. 82, No. 4, pp. 505–518, July–August, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pitsevich, G.A., Malevich, A.E. Features of the Interaction of Hydroxyl and Methyl Tops in the Ethanol Molecule: 2D-Calculation of the Torsion Energy Levels. J Appl Spectrosc 82, 540–553 (2015). https://doi.org/10.1007/s10812-015-0143-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10812-015-0143-7

Keywords

Navigation