Skip to main content

Advertisement

Log in

Kinetic and equilibrium studies on biosorption of cadmium(II) from aqueous solution by Gracilaria corticata and agar extraction algal waste

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

This study consists of using a new red algal species biomass together with Cd, as a toxic metal from synthetic contaminated wastewaters in order to test biomass potential to become a by-product to be used for the wastewater treatment. The effects of solution pH, initial Cd(II) concentration, biosorbents dosage, and contact time on the removal efficiency of Cd(II) from the synthetic solutions were investigated. Cd(II) sorption was found to be highly pH dependent, and the maximum sorption was obtained at pH 6.0. The removal efficiency of Gracilaria corticata and the agar extraction algal waste increased from 53 to 87% and 62 to 96% for an increase in biomass from 0.1 to 0.5 g L−1, respectively. Equilibrium data follow Langmuir model. The parameters of Langmuir equilibrium model are q max = 226.9 mg g−1, b = 0.009 mg L−1 and q max = 197.4 mg g−1, b = 0.012 mg L−1, respectively, for G. corticata and agar extraction algal waste. Different kinetic models such as pseudo-first-order, pseudo-second-order, and intra-particle diffusion model were tested, and the experimental data were in agreement with the pseudo-second-order model. FT-IR of biomasses revealed that amino, hydroxyl, and carbonyl were main functional groups. The results of SEM–EDX indicate that ion exchange occurred during the adsorption process. The present study suggests that G. corticata and agar extraction algal waste can be used as effective, environmentally friendly, and efficient biosorbents for Cd(II) removal from aqueous solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahmady-Asbchin S, Andres Y, Gérente C, Le Cloirec P (2008) Biosorption of Cu(II) from aqueous solution by Fucus serratus: surface characterization and sorption mechanisms. Bioresour Technol 99:6150–6155

    Article  CAS  PubMed  Google Scholar 

  • Al-Qodah Z (2006) Biosorption of heavy metal ions from aqueous solutions by activated sludge. Desalination 196:164–176

    Article  CAS  Google Scholar 

  • ATSDR (2003) Toxicological profile for cadmium. U.S. Department of Health and Humans Services, Public Health Service, Centres for Diseases Control., Atlanta, GA

  • Bazrafshan E, Zarei AA, Mostafapour FK (2016) Biosorption of cadmium from aqueous solutions by Trichoderma fungus: kinetic, thermodynamic, and equilibrium study. Desalin Water Treat 57:14598–14608

    Article  CAS  Google Scholar 

  • Bueno B, Torem M, Molina F, De Mesquita L (2008) Biosorption of lead(II), chromium(III) and copper(II) by R. opacus: equilibrium and kinetic studies. Miner Eng 21:65–75

    Article  CAS  Google Scholar 

  • Chojnacka K, Chojnacki A, Gorecka H (2005) Biosorption of Cr3+, Cd2+ and Cu2+ ions by blue–green algae Spirulina sp.: kinetics, equilibrium and the mechanism of the process. Chemosphere 59:75–84

    Article  CAS  PubMed  Google Scholar 

  • Crist RH, Oberholser K, Shank N, Nguyen M (1981) Nature of bonding between metallic ions and algal cell walls. Environ Sci Technol 15:1212–1217

    Article  CAS  Google Scholar 

  • Dalali N, Hagghi A (2016) Removal of cadmium from aqueous solutions by walnut green husk as a low-cost biosorbent. Desalin Water Treat 57:13782–13794

    Article  CAS  Google Scholar 

  • Dekhil AB, Hannachi Y, Ghorbel A, Boubaker T (2011) Removal of lead and cadmium ions from aqueous solutions using the macroalga Caulerpa racemosa. Chem Ecol 27:221–234

    Article  CAS  Google Scholar 

  • Deng S, Ting YP (2005) Fungal biomass with grafted poly (acrylic acid) for enhancement of Cu(II) and Cd(II) biosorption. Langmuir 21:5940–5948

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Su Y, Su H, Wang X, Zhu X (2007) Sorption and desorption of lead(II) from wastewater by green algae Cladophora fascicularis. J Hazard Mater 143:220–225

    Article  CAS  PubMed  Google Scholar 

  • Deng L, Zhang Y, Qin J, Wang X, Zhu X (2009) Biosorption of Cr(VI) from aqueous solutions by nonliving green algae Cladophora albida. Miner Eng 22(4):372–377

    Article  CAS  Google Scholar 

  • Esmaeili A, Saremnia B, Kalantari M (2015) Removal of mercury(II) from aqueous solutions by biosorption on the biomass of Sargassum glaucescens and Gracilaria corticata. Arab J Chem 8:506–511

    Article  CAS  Google Scholar 

  • Freundlich HMF (1906) Über die adsorption in Lösungen. Z Physikal Chem 57:385–470

    CAS  Google Scholar 

  • Hansen HK, Ribeiro A, Mateus E (2006) Biosorption of arsenic(V) with Lessonia nigrescens. Miner Eng 19:486–490

    Article  CAS  Google Scholar 

  • He J, Chen JP (2014) A comprehensive review on biosorption of heavy metals by algal biomass: materials, performances, chemistry, and modeling simulation tools. Bioresour Technol 160:67–78

    Article  CAS  PubMed  Google Scholar 

  • Ho Y-S, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34:451–465

    Article  CAS  Google Scholar 

  • Jiang J, Zhang N, Yang X, Song L, Yang S (2016) Toxic metal biosorption by macrocolonies of cyanobacterium Nostoc sphaeroides Kützing. J Appl Phycol 28:2265–2277

    Article  CAS  Google Scholar 

  • Kalman J, Riba I, DelValls TA, Blasco J (2010) Comparative toxicity of cadmium in the commercial fish species Sparus aurata and Solea senegalensis. Ecotox Environ Safe 73:306–311

    Article  CAS  Google Scholar 

  • Kannan S (2014) FT-IR and EDS analysis of the seaweeds Sargassum wightii (brown algae) and Gracilaria corticata (red algae). Int J Curr Microbiol Appl Sci 3:341–351

    Google Scholar 

  • Karthikeyan S, See S, Balasubramanian R (2007) Simultaneous determination of inorganic anions and selected organic acids in airborne particulate matter by ion chromatography. Anal Lett 40:793–804

    Article  CAS  Google Scholar 

  • Koutahzadeh N, Daneshvar E, Kousha M, Sohrabi M, Bhatnagar A (2013) Biosorption of hexavalent chromium from aqueous solution by six brown macroalgae. Desalin Water Treat 51:6021–6030

    Article  CAS  Google Scholar 

  • Kumar V, Fotedar R (2009) Agar extraction process for Gracilaria cliftonii (Withell, Millar, and Kraft, 1994). Carbohyd Polym 78:813–819

    Article  CAS  Google Scholar 

  • Lagergren S (1898) About the theory of so-called adsorption of soluble substances. Kungl Svensk Vetenskapacad Handl 24:1–39

    Google Scholar 

  • Lammers K, Arbuckle-Keil G, Dighton J (2009) FT-IR study of the changes in carbohydrate chemistry of three New Jersey pine barrens leaf litters during simulated control burning. Soil Biol Biochem 41:340–347

    Article  CAS  Google Scholar 

  • Langmuir I (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. J Am Chem Soc 40:1361–1403

    Article  CAS  Google Scholar 

  • Martins BL, Cruz CC, Luna AS, Henriques CA (2006) Sorption and desorption of Pb2+ ions by dead Sargassum sp. biomass. Biochem Eng J 27:310–314

    Article  CAS  Google Scholar 

  • Matagi S, Swai D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. Afr J Trop Hydrobiol Fish 8:13–25

    Article  Google Scholar 

  • Mehta S, Gaur J (2005) Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol 25:113–152

    Article  CAS  PubMed  Google Scholar 

  • Nagawa K, Yamada Y, Honda R, Ishizaki M, Tsuritani I, Kawano S, Kato T (1983) The relationship between itai-itai disease among inhabitants of the Jinzu River basin and cadmium in rice. Toxicol Lett 17:263–266

    Article  Google Scholar 

  • Nessim RB, Bassiouny AR, Zaki HR, Moawad MN, Kandeel KM (2011) Biosorption of lead and cadmium using marine algae. Chem Ecol 27:579–594

    Article  CAS  Google Scholar 

  • Nordberg GF, Fowler BA, Nordberg M (2014) Handbook on the toxicology of metals. Academic, NY

    Google Scholar 

  • Pal A, Ghosh S, Paul A (2006) Biosorption of cobalt by fungi from serpentine soil of Andaman. Bioresour Technol 97:1253–1258

    Article  CAS  PubMed  Google Scholar 

  • Palmieri RM, La Pera L, Di Bella G, Dugo G (2005) Simultaneous determination of Cd(II), Cu(II), Pb(II) and Zn(II) by derivative stripping chronopotentiometry in Pittosporum tobira leaves: a measurement of local atmospheric pollution in Messina (Sicily, Italy). Chemosphere 59:1161–1168

    Article  Google Scholar 

  • Pradhan S, Singh S, Rai LC (2007) Characterization of various functional groups present in the capsule of Microcystis and study of their role in biosorption of Fe, Ni and Cr. Bioresour Technol 98:595–601

    Article  CAS  PubMed  Google Scholar 

  • Praveen R, Vijayaraghavan K (2015) Optimization of Cu(II), Ni(II), Cd(II) and Pb(II) biosorption by red marine alga Kappaphycus alvarezii. Desalin Water Treat 55:1816–1824

    Article  CAS  Google Scholar 

  • Rezaei H (2016) Biosorption of chromium by using Spirulina sp. Arab J Chem 9:846–853

    Article  CAS  Google Scholar 

  • Romera E, González F, Ballester A, Blázquez M, Munoz J (2007) Comparative study of biosorption of heavy metals using different types of algae. Bioresour Technol 98:3344–3353

    Article  CAS  PubMed  Google Scholar 

  • Safa Y, Bhatti HN (2011) Kinetic and thermodynamic modeling for the removal of Direct Red-31 and Direct Orange-26 dyes from aqueous solutions by rice husk. Desalination 272:313–322

    Article  CAS  Google Scholar 

  • Sari A, Tuzen M (2008) Biosorption of cadmium(II) from aqueous solution by red algae (Ceramium virgatum): equilibrium, kinetic and thermodynamic studies. J Hazard Mat 157:448–454

    Article  CAS  Google Scholar 

  • Seki H, Suzuki A, Maruyama H (2005) Biosorption of chromium(VI) and arsenic(V) onto methylated yeast biomass. J Colloid Interf Sci 281:261–266

    Article  CAS  Google Scholar 

  • Singh L, Pavankumar AR, Lakshmanan R, Rajarao GK (2012) Effective removal of Cu2+ ions from aqueous medium using alginate as biosorbent. Ecol Eng 38:119–124

    Article  Google Scholar 

  • Vijayaraghavan K, Han MH, Choi SB, Yun Y-S (2007) Biosorption of Reactive black 5 by Corynebacterium glutamicum biomass immobilized in alginate and polysulfone matrices. Chemosphere 68:1838–1845

    Article  CAS  PubMed  Google Scholar 

  • Vilar VJ, Botelho CM, Boaventura RA (2006) Equilibrium and kinetic modelling of Cd(II) biosorption by algae Gelidium and agar extraction algal waste. Water Res 40:291–302

    Article  CAS  PubMed  Google Scholar 

  • Villanueva R, Sousa A, Gonçalves M, Nilsson M, Hilliou L (2010) Production and properties of agar from the invasive marine alga, Gracilaria vermiculophylla (Gracilariales, Rhodophyta). J Appl Phycol 22:211–220

    Article  CAS  Google Scholar 

  • Walker DJ, Hurl S (2002) The reduction of heavy metals in a stormwater wetland. Ecol Eng 18:407–414

    Article  Google Scholar 

  • Wang XS, Li ZZ, Tao SR (2009) Removal of chromium(VI) from aqueous solution using walnut hull. J Environ Manag 90:721–729

    Article  CAS  Google Scholar 

  • Weber WJ, Morris JC (1963) Kinetics of adsorption on carbon from solution. J Sanit Eng Div 89:31–60

    Google Scholar 

  • Wu F-C, Tseng R-L, Juang R-S (2001) Kinetic modeling of liquid-phase adsorption of reactive dyes and metal ions on chitosan. Water Res 35:613–618

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Alice Horton (Centre for Ecology and Hydrology, UK) for her support in editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abolfazl Naji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasab, S.M.H., Naji, A. & Yousefzadi, M. Kinetic and equilibrium studies on biosorption of cadmium(II) from aqueous solution by Gracilaria corticata and agar extraction algal waste. J Appl Phycol 29, 2107–2116 (2017). https://doi.org/10.1007/s10811-017-1117-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-017-1117-3

Keywords

Navigation