Skip to main content
Log in

Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

One of the most devastating diseases in Pyropia sea farms in Korea and Japan is red-rot disease caused by Pythium porphyrae. Outbreaks occur yearly causing losses in millions of dollars. Little is known about the source of the inoculum initiating these epidemics. Outbreaks of red-rot disease usually start in sea farms nearest river mouths. We hypothesized that the initial inoculum for red-rot disease may come from land. To test this, we determined the growth of P. porphyrae in different salinities. Growth experiments showed that it grew better in lower salinity (15 ‰) than in full seawater, but also grew in 0 ‰. When the seedlings of 11 land plants were exposed to hyphae of P. porphyrae, eight species showed root rot. The seedlings of carrot, Napa cabbage, radish, and rice died due to this infection. A hypersensitive response was observed in carrot seedlings; the root hairs died in 5 h after inoculation, and root damping off occurred within 24 h. The seedlings of cucumber, onion, and pumpkin showed retarded growth of root, shoot, and leaves. Pythium porphyrae zoosporangia and oocyte formation occurred on the roots of infected seedlings. Phylogenetic analysis, using several markers, showed that P. porphyrae is genetically identical or nested with isolates or species collected from terrestrial environments and different locations around the world. Our results suggest that terrestrial runoff could be an additional source of the inoculum initiating red-rot disease in Pyropia farms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Arasaki S (1947) Studies on the rot of Porphyra tenera by a Pythium. Nippon Suisan Gakk 13:74–90 in Japanese

    Article  Google Scholar 

  • Arasaki S (1956) Disease cycle and control of rot diseases of Porphyra tenera Kjellm. Shokubutsu Boeki 10:243–246 in Japanese

    Google Scholar 

  • Arasaki S, Akino K, Tomiyama T (1968) A comparison of some physiological aspects in a marine Pythium on the host and on the artificial medium. Bull Misaki Mar Biol Inst Kyoto Univ 12:203–206 in Japanese

    Google Scholar 

  • Choi Y-J, Beakes G, Glockling S, Kruse J, Nam B, Nigrelli L, Ploch S, Shin H-D, Shivas RG, Telle S, Voglmayr H, Thines M (2015) Towards a universal barcode of oomycetes—a comparison of the cox1 and cox2 loci. Mol Ecol Res 15:1275–1288

    Article  CAS  Google Scholar 

  • De Cock AWAM (1986) Marine Pythiaceae from decaying seaweeds in the Netherlands. Mycotaxon 25:101–110

    Google Scholar 

  • Dick MW (1990) Keys to Pythium. Published by M.W. Dick, Reading, UK, Department of Botany, University of Reading. 64 p.

  • Fujita Y (1990) Diseases of cultivated Porphyra in Japan. In: Akatsuka I (ed) Introduction to applied phycology. SPB Academic Publishing, The Hague, pp. 177–190

  • Gaastra W, Lipman LJ, De Cock AW, Exel TK, Pegge RB, Scheurwater J, Vilela R, Mendoza L (2010) Pythium insidiosum: an overview. Vet Microbiol 146:1–16

    Article  PubMed  Google Scholar 

  • Hajibabaei M, Janzen DH, Burns JM, Hallwachs W, Hebert PD (2006) DNA barcodes distinguish species of tropical Lepidoptera. PNAS 103:968–971

    Article  PubMed  PubMed Central  Google Scholar 

  • Han JH, Klochkova TA, Han JW, Shim J, Kim GH (2015) Transcriptome analysis of the short-term photosynthetic sea slug Placida dendritica. Algae 30:303–312

    Article  Google Scholar 

  • Hebert PD, Stoeckle MY, Zemlak TS, Francis CM (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312

    Article  PubMed  PubMed Central  Google Scholar 

  • Höhnk W (1953) Studien zur Brack und Seewassermykologie. 3. Oomycetes. 2. Veröff Inst Meeresforsch Bremerhav 2:52–108

    Google Scholar 

  • Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE, Cai L, de Cock AWAM, Dissanayake AJ, Glockling SL, Goonasekara ID, Gorczak M, Hahn M, Jayawardena RS, van Kan JAL, Laurence MH, Lévesque AC, Li X, Liu J-K, Maharachchikumbura SSN, Manamgoda DS, Martin FN, McKenzie EHC, McTaggart AR, Mortimer PE, Nair PVR, Pawłowska J, Rintoul TL, Shivas RG, Spies CFJ, Summerell BA, Taylor PWJ, Terhem RB, Udayanga D, Vaghefi N, Walther G, Wilk M, Wrzosek M, Xu J-C, Yan JY, Zhou N (2014) One stop shop: backbones trees for important phytopathogenic genera: I. Fungal Divers 67:21–125

    Article  Google Scholar 

  • Jarvis WR (1992) Managing diseases in greenhouse crops. APS Press, Saint Paul, Minnesota, p. 288

    Google Scholar 

  • Jiang YN, Haudenshield JS, Hartman GL (2012) Characterization of Pythium spp. from soil samples in Illinois. Can J Plant Pathol 34:448–454

    Article  Google Scholar 

  • Johnson Jr. TW, Sparrow FK Jr. (1961) Fungi in oceans and estuaries. J. Cramer: Weinheim, Germany. xxii, 668 p.

  • Kageyama K (2014) Molecular taxonomy and its application to ecological studies of Pythium species. J Gen Plant Pathol 80:314–326

    Article  Google Scholar 

  • Kawamura Y, Yokoo K, Tojo M, Hishiike M (2005) Distribution of Pythium porphyrae, the causal agent of red rot disease of Porphyra spp., in the Ariake Sea, Japan. Plant Dis 89:1041–1047

    Article  Google Scholar 

  • Kazama FY, Fuller MS (1977) Colonization of Porphyra perforata thallus discs by Pythium marinum, a marine facultative parasite. Mycologia 69:246–254

    Article  CAS  PubMed  Google Scholar 

  • Kim GH, Moon K-H, Kim J-Y, Shim J, Klochkova TA (2014) A revaluation of algal diseases in Korean Pyropia (Porphyra) sea farms and their economic impact. Algae 29:249–265

    Article  Google Scholar 

  • Klochkova TA, Shim JB, Hwang MS, Kim GH (2012) Host-parasite interactions and host species susceptibility of marine fungal parasite, Olpidiopsis sp., from Korea that infects red algae. J Appl Phycol 24:135–144

    Article  Google Scholar 

  • Kurokawa K, Tojo M (2010) First record of Pythium grandisporangium in Japan. Mycoscience 51:321–324

    Article  Google Scholar 

  • Lee SJ, Hwang MS, Park MA, Baek JM, Ha D-S, Lee JE, Lee S-R (2015) Molecular identification of the algal pathogen Pythium chondricola (Oomycetes) from Pyropia yezoensis (Rhodophyta) using ITS and cox1 markers. Algae 30:217–222

    Article  Google Scholar 

  • Lévesque CA, De Cock AWAM (2004) Molecular phylogeny and taxonomy of the genus Pythium. Mycol Res 108:1363–1383

    Article  PubMed  Google Scholar 

  • Middleton JT (1943) The taxonomy, host range and geographic distribution of the genus Pythium. Mem Torrey Bot Club 20:1–171

  • Owen-Going T-N, Beninger CW, Sutton JC, Hall JC (2008) Accumulation of phenolic compounds in plants and nutrient solution of hydroponic peppers inoculated with Pythium aphanidermatum. Can J Plant Pathol 30:214–225

    Article  CAS  Google Scholar 

  • Park CS (2006) Rapid detection of Pythium porphyrae in commercial samples of dried Porphyra yezoensis sheets by polymerase chain reaction. J Appl Phycol 18:203–207

    Article  CAS  Google Scholar 

  • Rizvi SSA, Yang XB (1996) Fungi associated with soybean seedling disease in Iowa. Plant Dis 80:57–60

    Article  Google Scholar 

  • Robideau GP, De Cock AW, Coffey MD, Voglmayr H, Brouwer H, Bala K, Chitty DW, Désaulniers N, Eggertson QA, Gachon CM, Hu CH, Küpper FC, Rintoul TL, Sarhan E, Verstappen EC, Zhang Y, Bonants PJ, Ristaino JB, Lévesque CA (2011) DNA barcoding of oomycetes with cytochrome c oxidase subunit I and internal transcribed spacer. Mol Ecol Resour 11:1002–1011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  PubMed  Google Scholar 

  • Saunders GW (2005) Applying DNA barcoding to red macroalgae: a preliminary appraisal holds promise for future applications. Phil Trans R Soc B 360:1879–1888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seifert KA, Samson RA, deWaard JR, Houbraken J, Lévesque CA, Moncalvo J-M, Louis-Seize G, Hebert PDN (2007) Prospects for fungus identification using CO1 DNA barcodes, with Penicillium as a test case. PNAS 104:3901–3906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sparrow FK (1934) Observations on marine Phycomycetes collected in Denmark. Dansk Bot Ark 8:1–24

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Supabandhu J, Fisher MC, Mendoza L, Vanittanakom N (2008) Isolation and identification of the human pathogen Pythium insidiosum from environmental samples collected in Thai agricultural areas. Med Mycol 46:41–52

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Ichitani T, Sasaki M (1977) Pythium porphyrae sp. nov. causing red rot of marine algae Porphyra spp. Trans Mycol Soc Jpn 18:279–285

    Google Scholar 

  • Uppalapati SR, Fujita Y (2000) Carbohydrate regulation of attachment, encystment, and appressorium formation by Pythium porphyrae (Oomycota) zoospores on Porphyra yezoensis (Rhodophyta). J Phycol 36:359–366

    Article  CAS  Google Scholar 

  • Uzuhashi S, Tojo M, Kobayashi S, Tokura K, Kakishima M (2008) First records of Pythium aquatile and P. macrosporum isolated from soils in Japan. Mycoscience 49:276–279

    Article  Google Scholar 

  • van der Plaats-Niterink AJ (1981) Monograph of the genus Pythium. Studies in Mycology 21. Centraal-bureau voor Schimmelcultures, Baarn, The Netherlands. 242 p., 103 figs.

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Phil Trans R Soc B 360:1847–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We express sincere thanks to Dr. G.C. Zuccarello (Wellington University) for his critical and very thoughtful comments which significantly improved this manuscript. This research was supported by Golden Seed Project, Ministry of Agriculture, Food and Rural Affairs (MAFRA), Ministry of Oceans and Fisheries (MOF), Rural Development Administration (RDA), and Korea Forest Service (KFS). This research was also a part of the project titled “Development of selection technique of suitable industrial variety in Korean coast” funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwang Hoon Kim.

Electronic supplementary material

Fig. S1

(JPEG 858 kb)

Fig. S2

(JPEG 403 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klochkova, T.A., Jung, S. & Kim, G.H. Host range and salinity tolerance of Pythium porphyrae may indicate its terrestrial origin. J Appl Phycol 29, 371–379 (2017). https://doi.org/10.1007/s10811-016-0947-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-016-0947-8

Keywords

Navigation