Skip to main content

Advertisement

Log in

Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Molecular analyses employing sequencing of the complete ribosomal RNA cistron (18S rDNA, ITS1, 5.8S rDNA, ITS2, and 28S rDNA) and transcriptome analysis of the RuBisCO gene (rbcL) were done on Chlorella vulgaris UTEX 2714. The constructed phylogenetic trees showed that C. vulgaris UTEX 2714 is Chlorella sorokiniana. Growth analysis and production of chlorophyll a over a range of increasing cultivation temperatures (27–40 °C) showed that this strain is far less thermotolerant in comparison to a common C. sorokiniana strain. A change in the taxonomic designation of strain UTEX 2714 is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguirre A-M, Bassi A (2013) Investigation of biomass concentration, lipid production, and cellulose content in Chlorella vulgaris cultures using response surface methodology. Biotechnol Bioeng 110:2114–2122

    Article  CAS  PubMed  Google Scholar 

  • Aguirre A-M, Bassi A (2014) Investigation of high pressure steaming (HPS) as a thermal treatment for lipid extraction from Chlorella vulgaris. Bioresour Technol 164:136–142

    Article  CAS  PubMed  Google Scholar 

  • Asmare AM, Demessie BA, Murthy GS (2014) Investigation of microalgae co-cultures for nutrient recovery and algal biomass production from dairy manure. Appl Eng Agric 30:335–342

    Google Scholar 

  • Beijerinck MW (1890) Kulturversuche mit Zoochlorellen, Lichenengonidien und anderen niederen Algen I-III. Bot Z 48:726–740

    Google Scholar 

  • Blanc G, Agarkova I, Grimwood J, Kuo A, Brueggeman A, Dunigan DD, Gurnon J, Ladunga I, Lindquist E, Lucas S, Pangilinan J, Pröschold T, Salamov A, Schmutz J, Weeks D, Yamada T, Lomsadze A, Borodovsky M, Claverie JM, Grigoriev IV, Van Etten JL (2012) The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol 13(5):R39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bock C, Krienitz L, Pröschold T (2011) Taxonomic reassessment of the genus Chlorella (Trebouxiophyceae) using molecular signatures (barcodes), including description of seven new species. Fottea 11:293–312

    Article  Google Scholar 

  • Castellanos CS (2013) Batch and continuous studies of Chlorella vulgaris in photo-bioreactors. University of Western Ontario - Electronic Thesis and Dissertation Repository. Paper 1113. http://ir.lib.uwo.ca/etd/1113

  • Chinnasamy S, Ramakrishnan B, Bhatnagar A, Das KC (2009) Biomassproduction potential of a wastewater alga Chlorella vulgaris ARC 1 under elevated levels of CO2 and temperature. Int J Mol Sci 10:518–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Claxton R, Marlowe M, Das KC (2010a) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. US Patent 20100267122:A1

    Google Scholar 

  • Chinnasamy S, Bhatnagar A, Hunt RW, Das KC (2010b) Microalgae cultivation in a wastewater dominated by carpet mill effluents for biofuel applications. Bioresour Technol 101:3097–3105

    Article  CAS  PubMed  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y (2012a) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense. I. autotrophic conditions. Enzyme Microb Tech 51:294–299

    Article  CAS  Google Scholar 

  • Choix FJ, de-Bashan LE, Bashan Y (2012b) Enhanced accumulation of starch and total carbohydrates in alginate-immobilized Chlorella spp. induced by Azospirillum brasilense. II. heterotrophic conditions. Enzyme Microb Tech 51:300–309

    Article  CAS  Google Scholar 

  • Choix FJ, Bashan Y, Mendoza A, de-Bashan LE (2014) Enhanced activity of ADP glucose pyrophosphorylase and formation of starch induced by Azospirillum brasilense in Chlorella vulgaris. J Biotechnol 177:22–34

    Article  PubMed  Google Scholar 

  • Coats ER, Searcy E, Feris K, Shrestha D, McDonald AG, Briones A, Magnuson T, Prior M (2013) An integrated two-stage anaerobic digestion and biofuel production process to reduce life cycle GHG emissions from US dairies. Biofuel Bioprod Bior 7:459–473

    Article  CAS  Google Scholar 

  • Coleman AW (2007) Pan-eukaryote ITS2 homologies revealed by RNA secondary structure. Nucleic Acids Res 35:3322–3329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortés-Jiménez D, Gómez-Guzmán A, Iturriaga G, Suárez R, Montero Alpírez G, Escalante FME (2014) Microorganisms associated to tomato seedlings growing in saline culture act as osmoprotectant. Braz J Microbiol 45:613–620

    Article  PubMed  PubMed Central  Google Scholar 

  • Covarrubias SA, de-Bashan LE, Moreno M, Bashan Y (2012) Alginate beads provide a beneficial physical barrier against native microorganisms in wastewater treated with immobilized bacteria and microalgae. Appl Microbiol Biotechnol 93:2669–2680

    Article  CAS  PubMed  Google Scholar 

  • Cruz I, Bashan Y, Hernàndez-Carmona G, de-Bashan LE (2013) Biological deterioration of alginate beads containing immobilized microalgae and bacteria during tertiary wastewater treatment. Appl Microbiol Biotechnol 97:9847–9858

    Article  CAS  PubMed  Google Scholar 

  • Darienko T, Gustavs L, Mudimu O, Menendez CR, Schumann R, Karsten U, Friedl T, Pröschold T (2010) Chloroidium, a common terrestrial coccoid green alga previously assigned to Chlorella (Trebouxiophyceae, Chlorophyta). Eur J Phycol 45:79–95

    Article  CAS  Google Scholar 

  • Das KC, Cannon BR, Bhatnagar A, Chinnasamy S (2014) Method and system of culturing an algal mat. US Patent 8722389:B1

    Google Scholar 

  • de-Bashan LE, Bashan Y (2008) Joint immobilization of plant growth-promoting bacteria and green microalgae in alginate beads as an experimental model for studying plant-bacterium interactions. Appl Environ Microbiol 74:6797–6802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de-Bashan LE, Bashan Y (2010) Immobilized microalgae for removing pollutants: review of practical aspects. Bioresour Technol 101:1611–1627

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Bashan Y, Moreno M, Lebsky VK, Bustillos JJ (2002a) Increased pigment and lipid content, lipid variety, and cell and population size of the microalgae Chlorella spp. when co-immobilized in alginate beads with the microalgae-growth-promoting bacterium Azospirillum brasilense. Can J Microbiol 48:514–521

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez J-P, Morey T, Bashan Y (2004) Microalgae growth-promoting bacteria as “helpers” for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Res 38:466–474

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2005) Cultivation factors and population size control uptake of nitrogen by the microalgae Chlorella vulgaris when interacting with the microalgae growth-promoting bacterium Azospirillum brasilense. FEMS Microbiol Ecol 54:197–203

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Antoun H, Bashan Y (2008a) Involvement of indole-3-acetic-acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44:938–947

  • de-Bashan LE, Magallon P, Antoun H, Bashan Y (2008b) Role of glutamate dehydrogenase and glutamine synthetase in Chlorella vulgaris during assimilation of ammonium when jointly immobilized with the microalgae-growth-promoting bacterium Azospirillum brasilense. J Phycol 44:1188–1196

    Article  CAS  PubMed  Google Scholar 

  • de-Bashan LE, Trejo A, Huss VAR, Hernandez J-P, Bashan Y (2008c) Chlorella sorokiniana UTEX 2805, a heat and intense, sunlight-tolerant microalga with potential for removing ammonium from wastewater. Bioresource Technol 99:4980–4989

    Article  CAS  Google Scholar 

  • de-Bashan LE, Schmid M, Rothballer M, Hartmann A, Bashan Y (2011) Cell-cell interaction in the eukaryote-prokaryote model using the microalgae Chlorella vulgaris and the bacterium Azospirillum brasilense immobilized in polymer beads. J Phycol 47:1350–1359

    Article  PubMed  Google Scholar 

  • de-Bashan LE, Hernandez J-P, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189

    Article  Google Scholar 

  • Dewan A, Kim J, McLean RH, Vanapalli SA, Karim MN (2012) Growth kinetics of microalgae in microfluidic static droplet arrays. Biotechnol Bioeng 109:2987–2996

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fendrich, S. (2005) Examination of Chlorella sorokiniana under arid climatic conditiond with regards to its capoacity for nutrient removal in wastewater. Diploma Thesis, technical University of Hamburg-Harburg, Germany

  • Gerken HG, Donohoe B, Knoshaug EP (2013) Enzymatic cell wall degradation of Chlorella vulgaris and other microalgae for biofuels production. Planta 237:239–253

    Article  CAS  PubMed  Google Scholar 

  • Girard J-M, Roy M-L, Ben Hafsa M, Gagnon J, Faucheux N, Heitz M, Tremblay R, Deschênes J-S (2014) Mixotrophic cultivation of green microalgae Scenedesmus obliquus on cheese whey permeate for biodiesel production. Algal Res 5:241–248

    Article  Google Scholar 

  • Gonzalez LE, Bashan Y (2000) Growth promotion of the microalgae Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant growth-promoting bacteria Azospirillum brasilense. Appl Environ Microbiol 66:1537–1541

    Google Scholar 

  • Gonzalez LE, Cañizares RO, Baena S (1997) Efficiency of ammonia and phosphorus removal from a Colombian agroindustrial wastewater by the microalgae Chlorella vulgaris and Scenedesmus dimorphus. Bioresour Technol 60:259–262

    Article  CAS  Google Scholar 

  • Gonzalez-Bashan LE, Lebsky V, Hernandez JP, Bustillos JJ, Bashan Y (2000) Changes in the metabolism of the microalgae Chlorella vulgaris when coimmobilized in alginate with the nitrogen-fixing Phyllobacterium myrsinacearum. Can J Microbiol 46:653–659

    Article  CAS  PubMed  Google Scholar 

  • Guiry MD, Guiry GM (2015) AlgaeBase. World-wide electronic publication. National University of Ireland. Galway. http://www.algaebase.org. Accessed 18 March 2015

  • Gultom SO, Zamalloa C, Hu B (2014) Microalgae harvest through fungal pelletization—co-culture of Chlorella vulgaris and Aspergillus niger. Energies 7:4417–4429

    Article  Google Scholar 

  • Hasan R, Zhang B, Wang L, Shahbazi A (2014) Bioremediation of swine wastewater and biofuel potential by using Chlorella vulgaris, Chlamydomonas reinhardtii, and Chlamydomonas debaryana. J Pet Environ Biotechnol 5:175. DOI: 10.13140/2.1.3348.4168

  • Heredia-Arroyo T, Wei W, Ruan R, Hu B (2011) Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass Bioenerg 35:2245–2253

    Article  CAS  Google Scholar 

  • Hernandez J-P, de-Bashan LE, Bashan Y (2006) Starvation enhances phosphorus removal from wastewater by the microalga Chlorella spp. co-immobilized with Azospirillum brasilense. Enzyme Microb Tech 38:190–198

    Article  CAS  Google Scholar 

  • Hernandez J-P, de-Bashan LE, Rodriguez DJ, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45:88–93

    Article  CAS  Google Scholar 

  • Holland AD, Dragavon JM, Sigee DC (2011) Intrinsic autotrophic biomass yield and productivity in algae: experimental methods for strain selection. Biotechnol J 6:572–583

    Article  CAS  PubMed  Google Scholar 

  • Hoshina R, Imamura N (2008) Multiple origins of the symbioses in Paramecium bursaria. Protist 159:53–63

    Article  CAS  PubMed  Google Scholar 

  • Hunt RW, Chinnasamy S, Bhatnagar A, Das KC (2010) Effect of biochemical stimulants on biomass productivity and metabolite content of the microalga Chlorella sorokiniana. Appl Biochem Biotechnol 162:2400–2414

    Article  CAS  PubMed  Google Scholar 

  • Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    Article  CAS  Google Scholar 

  • Joint Genome Institute (2012) Coccomyxa subellipsoidea C-169 v2.0. U.S. Department of Energy. Available: http://genome.jgi.doe.gov/Coc_C169_1. Accessed 2014 Dec 23

  • Kessler E, Huss VAR (1992) Comparative physiology and biochemistry and taxonomic assignment of the Chlorella (Chlorophyceae) strains of the Culture Collection of the University of Texas at Austin. J Phycol 28:550–553

    Article  Google Scholar 

  • Kim J, Lee J-Y, Ahting C, Johnstone R, Lu T (2014a) Growth of Chlorella vulgaris using sodium bicarbonate under no mixing condition. Asia-Pac J Chem Eng 9:604–609

    CAS  Google Scholar 

  • Kim J, Lee J-Y, Lu T (2014b) Effects of dissolved inorganic carbon and mixing on autotrophic growth of Chlorella vulgaris. Biochem Eng J 82:34–40

    Article  CAS  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi N, Noel EA, Barnes A, Watson A, Rosenberg JN, Erickson G, Oyler GA (2013) Characterization of three Chlorella sorokiniana strains in anaerobic digested effluent from cattle manure. Bioresource Technol 150:377–386

    Article  CAS  Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen. nov. (Chlorophyta, Trebouxiophyceae). Phycologia 43:529–542

    Article  Google Scholar 

  • Krienitz L, Huss VAR, Bock C (2015) Chlorella: 125 years of the green survivalist. Trends Plant Sci 20:67–69

    Article  CAS  PubMed  Google Scholar 

  • Lebsky VK, Gonzalez-Bashan LE, Bashan Y (2001) Ultrastructure of coimmobilization of the microalga Chlorella vulgaris with the plant growth-promoting bacterium Azospirillum brasilense and with its natural associative bacterium Phyllobacterium myrsinacearum in alginate beads. Can J Microbiol 47:1–8

    Article  CAS  PubMed  Google Scholar 

  • Lemmon EM, Lemmon AR (2013) High-throughput genomic data in systematics and phylogenetics. Annu Rev Ecol Syst 44:99–121

    Article  Google Scholar 

  • Leyva LA, Bashan Y, Mendoza A, de-Bashan LE (2014) Accumulation of fatty acids in Chlorella vulgaris under heterotrophic conditions in relation to activity of acetyl-CoA carboxylase, temperature, and co-immobilization with Azospirillum brasilense. Naturwissenschaften 101:819–830

    Article  CAS  PubMed  Google Scholar 

  • Leyva LA, Bashan Y, de-Bashan LE (2015) Activity of acetyl-CoA carboxylase is not directly linked to accumulation of lipids when Chlorella vulgaris is co-immobilised with Azospirillum brasilense in alginate under autotrophic and heterotrophic conditions. Ann Microbiol 65:339–349

    Article  CAS  Google Scholar 

  • Li T, Zheng Y, Yu L, Chen S (2013) High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour Technol 131:60–67

    Article  CAS  PubMed  Google Scholar 

  • Luo W, Pröschold T, Bock C, Krienitz L (2010) Generic concept in Chlorella-related coccoid green algae (Chlorophyta, Trebouxiophyceae). Plant Biol 12:545–553

    Article  CAS  PubMed  Google Scholar 

  • Lv J-M, Xu CL-H, X-H ZL, Chen H-L (2010) Enhanced lipid production of Chlorella vulgaris by adjustment of cultivation conditions. Bioresource Technol 101:6797–6804

    Article  CAS  Google Scholar 

  • Ma S, Huss VAR, Tan D, Sun X, Chen J, Xie Y, Zhang J (2013) A novel species in the genus Heveochlorella (Trebouxiophyceae, Chlorophyta) witnesses the evolution from an epiphytic into an endophytic lifestyle in tree-dwelling green algae. Eur J Phycol 48:200–209

    Article  Google Scholar 

  • Ma X, Zhou W, Fu Z, Cheng Y, Min M, Liu Y, Zhang Y, Chen P, Ruan R (2014) Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technol 167:8–13

    Article  CAS  Google Scholar 

  • Maor R (2010) Compositions and methods for increasing oil content in algae. US Patent 20120034698:A1

    Google Scholar 

  • Maxwell DP, Falk S, Huner NPA (1995) Photosystem II excitation pressure and development of resistance to photoinhibition. 1. Light-harvesting complex II abundance and zeaxanthin content in Chlorella vulgaris. Plant Physiol 107:687–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer JR, Ellner SP, Hairston NG Jr, Jones LE, Yoshida T (2006) Prey evolution on the time scale of predator–prey dynamics revealed by allele-specific quantitative PCR. PNAS 103:10690–10695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meza B, de-Bashan LE, Bashan Y (2015) Involvement of indole-3-acetic acid produced by Azospirillum brasilense in accumulating intra-cellular ammonium in Chlorella vulgaris. Res Microbiol 166:72–83

    Article  CAS  PubMed  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2000a) High photosynthetic productivity of green microalga Chlorella sorokiniana. Appl Biochem Biotech 87:203–218

    Article  CAS  Google Scholar 

  • Morita M, Watanabe Y, Saiki H (2000b) Photosynthetic productivity of conical helical tubular photobioreactor incorporating Chlorella sorokiniana under field conditions. Biotechnol Bioeng 77:155–162

    Article  Google Scholar 

  • Myers JA, Curtis BS, Curtis WR (2013) Improving accuracy of cell and chromophore concentration measurements using optical density. BMC Biophys 6:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozkan A, Berberoglu H (2011) Adhesion of Chlorella vulgaris on hydrophilic and hydrophobic surfaces. ASME 2011 International Mechanical Engineering Congress and Exposition. Vol. 4: Energy Systems Analysis, Thermodynamics and Sustainability; Combustion Science and Engineering; Nanoengineering for Energy, Parts A and B pp.169–178; Denver, Colorado, USA, November 11–17, 2011. Paper No. IMECE2011-64133, doi:10.1115/IMECE2011-64133

  • Ozkan A, Berberoglu H (2013a) Physico-chemical surface properties of microalgae. Colloid Surface B 112:287–293

    Article  CAS  Google Scholar 

  • Ozkan A, Berberoglu H (2013b) Cell to substratum and cell to cell interactions of microalgae. Colloid Surface B 112:302–309

    Article  CAS  Google Scholar 

  • Ozkan A, Berberoglu H (2013c) Adhesion of algal cells to surfaces. Biofouling 29:469–482

    Article  PubMed  Google Scholar 

  • Passero ML, Cragin B, Hall AR, Staley N, Coats ER, McDonald AG, Feris K (2014) Ultraviolet radiation pre-treatment modifies dairy wastewater, improving its utility as a medium for algal cultivation. Algal Res 6:98–110

    Article  Google Scholar 

  • Perez-Garcia O, de-Bashan LE, Hernandez J-P, Bashan Y (2010) Efficiency of growth and nutrient uptake from wastewater by heterotrophic, autotrophic, and mixotrophic cultivation of Chlorella vulgaris immobilized with Azospirillum brasilense. J Phycol 46:800–812

    Article  CAS  Google Scholar 

  • Perez-Garcia O, Escalante FME, de-Bashan LE, Bashan Y (2011a) Heterotrophic cultures of microalgae: metabolism and potential products. Water Res 45:11–36

    Article  CAS  PubMed  Google Scholar 

  • Perez-Garcia O, Bashan Y, Puente ME (2011b) Organic carbon supplementation of sterilized municipal wastewater is essential for heterotrophic growth and removing ammonium by the microalga Chlorella vulgaris. J Phycol 47:190–199

    Article  PubMed  Google Scholar 

  • Pröschold T, Leliaert F (2007) Systematics of the green algae: conflict of classic and modern approaches. In: Brodie J, Lewis J (eds) Unravelling the algae: the past, present, and future of algal systematics. CRC Press, Boca Raton, pp 123–153

    Google Scholar 

  • Reisser W (1984) The taxonomy of green algae endosymbiotic in ciliates and a sponge. Brit Phycol J 19:309–318

    Article  Google Scholar 

  • Rosenberg JN, Kobayashi N, Barnes A, Noel EA, Betenbaugh MJ, Oyler GA (2014) Comparative analyses of three Chlorella species in response to light and sugar reveal distinctive lipid accumulation patterns in the microalga C. sorokiniana. PLoS ONE 9(4):e92460

    Article  PubMed  PubMed Central  Google Scholar 

  • Round FE (1970) Biology of the algae. Arnold, London, 269 pp

    Google Scholar 

  • Sakai N, Sakamoto Y, Kishimoto N, Chihara M, Karube I (1995) Chlorella strains from hot springs tolerant to high temperature and high CO2. Energ Convers Manag 36:693–696

    Article  CAS  Google Scholar 

  • Shamzi MM, Lai ZW, Arbakariya BA (2011) Heterotrophic cultivation of microalgae for production of biodiesel. Recent Pat Biotech 5:95–107

    Article  Google Scholar 

  • Shihira J, Krauss RW (1965) Chlorella. Physiology and taxonomy of forty-one isolates. University of Maryland, College Park, 92 pp

    Google Scholar 

  • Sorokin C, Krauss RW (1958) Intensity on the growth rates of green algae. Plant Physiol 33:109–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stefanik DJ, Lubinski TJ, Granger BR, Byrd AL, Reitzel AM, DeFilippo L, Lorenc A, Finnerty JR (2014) Production of a reference transcriptome and transcriptomic database (EdwardsiellaBase) for the lined sea anemone, Edwardsiella lineata, a parasitic cnidarian. BMC Genomics 15:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trejo A, de-Bashan LE, Hartmann A, Hernandez J-P, Rothballer M, Schmid M, Bashan Y (2012) Recycling waste debris of immobilized microalgae and plant growth-promoting bacteria from wastewater treatment as a resource to improve fertility of eroded desert soil. Environ Exp Bot 75:65–73

    Article  Google Scholar 

  • Valderrama LT, Del Campo CM, Rodriguez CM, de-Bashan LE, Bashan Y (2002) Treatment of recalcitrant wastewater from ethanol and citric acid production using the microalga Chlorella vulgaris and the macrophyte Lemna minuscule. Water Res 36:4185–4192

    Article  CAS  PubMed  Google Scholar 

  • Van Benthem MH, Powell AJ, Davis RW, Ricken JB, Lane TW, Lane P, Keenan MR (2008) Hyperspectral imaging of oil producing microalgae under thermal and nutritional stress. Sandia report; SAND2008-6357, Sandia National Laboratories Albuquerque, USA

  • Verbruggen H, Theriot EC (2008) Building trees of algae: some advances in phylogenetic and evolutionary analysis. Eur J Phycol 43:229–252

    Article  Google Scholar 

  • Wan M-X, Wang R-M, Xia J-L, Rosenberg JN, Nie Z-Y, Kobayashi N, Oyler GA, Betenbaugh MJ (2012) Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol Bioeng 109:1958–1964

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang Y, Chen P, Ruan R (2010) Semi-continuous cultivation of Chlorella vulgaris for treating undigested and digested dairy manures. Appl Biochem Biotech 162:2324–2332

    Article  CAS  Google Scholar 

  • Wang Z, Hou J, Bowden D, Belovich JM (2013) Evaluation of an inclined gravity settler for microalgae harvesting. J Chem Technol Biot 89:714–720

    Article  Google Scholar 

  • Wileman A, Ozkan A, Berberoglu H (2012) Rheological properties of algae slurries for minimizing harvesting energy requirements in biofuel production. Bioresour Technol 104:432–439

    Article  CAS  PubMed  Google Scholar 

  • Wilson KE, Huner NPA (2000) The role of growth rate, redox-state of the plastoquinone pool and the trans-thylakoid ΔpH in photoacclimation of Chlorella vulgaris to growth irradiance and temperature. Planta 212:93–102

    Article  CAS  PubMed  Google Scholar 

  • Yoo JJ, Choi SP, Kim JYH, Chang WS, Sim SJ (2013) Development of thin-film photo-bioreactor and its application to outdoor culture of microalgae. Bioproc Biosyst Eng 36:729–736

    Article  CAS  Google Scholar 

  • Youngman RE (1978). Measurement of chlorophyll. Water Research Centre. Tech. Rep. TR82. Medmenham, UK

  • Zhang B, Wang L, Hasan R, Shahbazi A (2014) Characterization of a native algae species Chlamydomonas debaryana: strain selection, bioremediation ability, and lipid characterization. BioResources, North America, 9, Aug. 2014. http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_09_4_6130_Zhang_Native_Algae_Bioremediation. Date accessed: 17 Nov. 2014

  • Zheng Y, Li T, Yu X, Bates PD, Dong T, Chen S (2013) High-density fed-batch culture of a thermotolerant microalga Chlorella sorokiniana for biofuel production. Appl Energ 108:281–287

    Article  CAS  Google Scholar 

  • Zhou W, Li Y, Min M, Hu B, Chen P, Ruan R (2011) Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresour Technol 102:6909–6919

    Article  CAS  PubMed  Google Scholar 

  • Zhou W, Hu B, Li Y, Min M, Mohr M, Du Z, Chen P, Ruan R (2012) Mass cultivation of microalgae on animal wastewater: a sequential two-stage cultivation process for energy crop and omega-3-rich animal feed production. Appl Biochem Biotech 168:348–363

Download references

Acknowledgments

We thank Raul Llera-Herrera at the Research Center for Food and Development (CIAD, Mazatlan, Mexico) for assembling the transcriptome. At CIBNOR, we thank Paulina Adams and Juan-Pablo Hernandez for technical assistance and microalgae cultivation and Ira Fogel for providing English editing and editorial suggestions. This study was supported by Consejo Nacional de Ciencia y Tecnologia of Mexico (CONACYT-Basic Science-2009, contracts 130656 and 164548) and time for writing by The Bashan Foundation, USA. This is contribution 2015–001 from the Bashan Institute of Science, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luz E. de-Bashan.

Additional information

This study is dedicated to the memory of the German/Spanish mycorrhizae researcher Dr. Horst Vierheilig (1964–2011) of CSIC, Spain.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Growth and chlorophyll a content of C. sorokiniana UTEX 2805 and strain UTEX 2714 at temperature of 40 °C for 10 days. Values of comparisons of growth of each strain with time denoted by different capital letter differ significantly by one-way ANOVA and LSD post-hoc analysis at p < 0.05. Comparisons between strains in the same sampling time denoted by different lower case letter differ significantly by Student’s t-test at p < 0.05 (PDF 94 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bashan, Y., Lopez, B.R., Huss, V.A.R. et al. Chlorella sorokiniana (formerly C. vulgaris) UTEX 2714, a non-thermotolerant microalga useful for biotechnological applications and as a reference strain. J Appl Phycol 28, 113–121 (2016). https://doi.org/10.1007/s10811-015-0571-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-015-0571-z

Keywords

Navigation