Skip to main content
Log in

UPLC-MS analysis of Chlamydomonas reinhardtii and Scenedesmus obliquus lipid extracts and their possible metabolic roles

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The paper presents the ultra-performance liquid chromatography (UPLC) and high-resolution mass spectrometric analysis and comparison of total lipid profiles of two green algal species, Chlamydomonas reinhardtii and Scenedesmus (Acutodesmus) obliquus. The targeted UPLC-mass spectroscopy (MS) analysis revealed that both the green algae showed the presence of almost similar types of lipids. However, there were differences in the presence of three triacylglycerol (TAG) species (TAG 54:4, TAG 54:5 and TAG 54:8) and two diacylglycerol (DAG) species (DAG 36:3 and DAG 36:4) in C. reinhardtii that were found to be completely absent in Scenedesmus obliquus. The triacylglycerol content in S. obliquus was five times more than that in C. reinhardtii. In addition, amount of diacylglycerol-O-(N,N,N-trimethyl) homoserine, a characteristic algal lipid, in S. obliquus was only half of that in C. reinhardtii. The paper also discusses the metabolic roles of the lipids produced by these algal species with reference to the lipids identified by UPLC-MS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson RA (2005) Algal culturing techniques. Elsevier Academic Press, London

    Google Scholar 

  • Arisz SA, Testerink C, Munnik T (2009) Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 1791:869–875

    Article  CAS  PubMed  Google Scholar 

  • Awai K, Watanabe H, Benning C, Nishida I (2007) Digalactosyldiacylglycerol is required for better photosynthetic growth of Synechocystis sp. PCC6803 under phosphate limitation. Plant Cell Physiol 48:1517–1523

    Article  CAS  PubMed  Google Scholar 

  • Beal CM, Webber ME, Ruoff RS, Hebner RE (2010) Lipid analysis of Neochloris oleoabundans by liquid state NMR. Biotechnol Bioeng 106:573–583

    Article  CAS  PubMed  Google Scholar 

  • Bligh EG, Dyer WJ (1959) A rapid method for total lipid extraction and purification. Can J Biochem Phys 37:911–917

    Article  CAS  Google Scholar 

  • Canto de Loura I, Duabacq JP, Thomas JC (1987) The effects of nitrogen deficiency on pigments and lipids of cyanobacteria. Plant Physiol 83:838–843

    Article  CAS  Google Scholar 

  • Chisti Y (2007) Biodiesel from algae. Biotechnol Adv 25:294–306

    Article  CAS  PubMed  Google Scholar 

  • Danhorn T, Hentzer M, Givskov M, Parsek MR, Fuqua C (2004) Phosphorus limitation enhances biofilm formation of the plant pathogen Agrobacterium tumefaciens through the PhoR-PhoB regulatory system. J Bacteriol 186:4492–4501

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deeba F, Kumar V, Gautam K, Saxena RK, Sharma DK (2012) Bioprocessing of Jatropha curcas seed oil and deoiled seed hulls for the production of biodiesel and biogas. Biomass Bioenerg 40:13–18

    Article  CAS  Google Scholar 

  • Ducharme NA, Bickel PE (2008) Minireview: lipid droplets in lipogenesis and lipolysis. Endocrinol 149:942–949

    Article  CAS  Google Scholar 

  • Gautam K, Pareek A, Sharma DK (2013) Biochemical composition of green alga Chlorella minutissima in mixotrophic cultures under the effect of different carbon sources. J Biosci Bioeng 116:624–627

    Article  CAS  PubMed  Google Scholar 

  • Giroud C, Gerber A, Eichenberger W (1989) Lipids of Chlamydomonas reinhardtii: analysis of molecular species and intracellular site(s) of biosynthesis. Plant Cell Physiol 29:587–595

    Google Scholar 

  • Gorman DS, Levine RP (1965) Cytochrome f and plastocyanin: their sequence in the photosynthetic electron transport chain of Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 54:1665–1669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guella G, Frassanito R, Mancini I (2003) A new solution for an old problem: the regiochemical distribution of the acyl chains in galactolipids can be established by electrospray ionization tandem mass Spectrometry. Rapid Commun Mass Spectrom 17:1982–1994

    Article  CAS  PubMed  Google Scholar 

  • Guschina IA, Harwood JL (2006) Lipids and lipid metabolism in eukaryotic algae. Prog Lipid Res 45:160–186

    Article  CAS  PubMed  Google Scholar 

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler P-A, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Springer, Netherlands, pp 53–64

    Google Scholar 

  • Harwood JL, Guschina IA (2009) The versatility of algae and their lipid metabolism. Biochimie 91:679–684

    Article  CAS  PubMed  Google Scholar 

  • He H, Rodgers RP, Marshall AG, Hsu CS (2011) Algae polar lipids characterized by online liquid chromatography coupled with hybrid linear quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometry. Energ Fuels 25:4770–4775

    Article  CAS  Google Scholar 

  • Hegewald E, Hanagata N (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algol Stud/Arch Hydrobiol Suppl 100:29–49

    Google Scholar 

  • Holdt SL, Kraan S (2011) Bioactive compounds in seaweed: functional food applications and legislation. J Appl Phycol 23:543–597

    Article  CAS  Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  CAS  PubMed  Google Scholar 

  • Hummel J, Segu S, Li Y, Irgang S, Jueppner J, Giavalisco P (2011) Ultra performance liquid chromatography and high resolution mass spectrometry for the analysis of plant lipids. Front Plant Sc 2:1–17

    Google Scholar 

  • Jackowski S, Wang J, Baburina I (2000) Activity of the phosphatidylcholine biosynthetic pathway modulates the distribution of fatty acids into glycerolipids in proliferating cells. Biochim Biophys Acta 1483:301–315

    Article  CAS  PubMed  Google Scholar 

  • Jones J, Manning S, Montoya M, Keller K, Poenie M (2012) Extraction of algal lipids and their analysis by HPLC and mass spectrometry. J Am Oil Chem Soc 89:1371–1381

    CAS  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 41:909–917

    Article  Google Scholar 

  • Kumar G, Srivastava R, Singh R (2013) Exploring biodiesel: chemistry, biochemistry, and microalgal source. Intl J Green Energ 10:775–796

    Article  Google Scholar 

  • Langford ML (2010) Farnesol signaling in Candida albicans. PhD Thesis, University of Nebraska – Lincoln, USA

  • Laurens LML, Wolfrum EJ (2011) Feasibility of spectroscopic characterization of algal lipids: chemometric correlation of NIR and FTIR spectra with exogenous lipids in algal biomass. Bioenerg Res 4:22–35

    Article  Google Scholar 

  • Li H, Yan X, Xu J, Zhou C (2008) Precise identification of photosynthetic glycerolipids in microalga Tetraselmis chuii by UPLC-ESI-Q-TOF-MS. Sci China C Life Sci 51:1101–1107

    Article  CAS  PubMed  Google Scholar 

  • Lima ES, Abdalla DSP (2002) High-performance liquid chromatography of fatty acids in biological samples. Anal Chim Acta 465:81–91

    Article  CAS  Google Scholar 

  • Liu Z, Yan H, Wang K, Kuang T, Zhang J, Gui L, An X, Chang W (2004) Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution. Nature 428:287–292

    Article  CAS  PubMed  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 Å resolution structure of photosystem II. Nature 438:1040–1044

    Article  CAS  PubMed  Google Scholar 

  • Mashburn-Warren L, Howe J, Garidel P, Richter W, Steiniger F, Roessle M, Brandenburg K, Whiteley M (2008) Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol Microbiol 69:491–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D (2008) Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res 49:1137–1146

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miranda MS, Cintra RG, Barros SBM, Mancini-Filho J (1998) Antioxidant activity of the microalga Spirulina maxima. Braz J Med Biol Res 31:1075–1079

    Article  CAS  PubMed  Google Scholar 

  • Munnik T, Testerink C (2009) Plant phospholipid signaling-in a nutshell. J Lipid Res 50:260–265

    Article  Google Scholar 

  • Munnik T, Irvine RF, Musgrave A (1998) Phospholipid signalling in plants. Biochim Biophys Acta 1389:222–272

    Article  CAS  PubMed  Google Scholar 

  • Nevada Renewable Energy Consortium (2011) Algal-based biofuels, final report, subtask 1.3. Desert Research Institute, Reno, p 38

    Google Scholar 

  • Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ogiso H, Suzuki T, Taguchi R (2008) Development of a reverse-phase liquid chromatography electrospray ionization mass spectrometry method for lipidomics, improving detection of phosphatidic acid and phosphatidylserine. Anal Biochem 375:124–131

    Article  CAS  PubMed  Google Scholar 

  • Ravishankar GA, Sarada R (2007) Proc. Discussion meeting on energy biosciences, Department of Biotechnology. Minist Sci Technol

  • Sato N, Hagio M, Wada H, Tsuzuki M (2000) Requirement of phosphatidylglycerol for photosynthetic function in thylakoid membranes. Proc Natl Acad Sci 97:10655–10660

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sayre R (2010) Microalgae: the potential for carbon capture. Bioscience 60:724–727

    Article  Google Scholar 

  • Schlapfer P, Eichenberger W (1983) Evidence for the involvement of diacylglyceryl(N, N, N-trimethyl)-homoserine in the desaturation of oleic and linoleic acids in Chlamydomonas reinhardtii (Chlorophyceae). Plant Sci 32:243–252

    CAS  Google Scholar 

  • Seiwert B, Giavalisco P, Willmitzer L (2010) Advanced mass spectrometry methods for analysis of lipids from photosynthetic organisms. In: Wada M, Murata N (eds) Lipids in photosynthesis: essential and regulatory functions. Springer, Dordrecht, pp 445–461

    Google Scholar 

  • Sheehan J, Dunahay T, Benemann J, Roessler P (1998) A look back at the U.S. Department of Energy’s Aquatic Species Program: biodiesel from algae by the National Renewable Energy Laboratory. Report NREL/TP-580-24190, National Renewable Energy Laboratory, Golden

    Book  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen­Bazire G (1971) Purification and properties of unicellular blue­green algae (order Chroococcales). Bacteriol Rev 35:171–205

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vieler A, Wilhelm C, Goss R, Suß R, Schiller J (2007) The lipid composition of the unicellular green alga Chlamydomonas reinhardtii and the diatom Cyclotella meneghiniana investigated by MALDI-TOF MS and TLC. Chem Phys Lipids 150:143–155

    Article  CAS  PubMed  Google Scholar 

  • Vogel G, Eichenberger W (1992) Betaine lipids in lower plants. Biosynthesis of DGTS and DGTA in Ochromonas danica (Chrysophyceae) and the possible role of DGTS in lipid metabolism. Plant Cell Physiol 33:427–436

    CAS  Google Scholar 

  • Xue H, Chen X, Li G (2007) Involvement of phospholipid signaling in plant growth and hormone effects. Curr Opin Plant Biol 10:483–489

    Article  CAS  PubMed  Google Scholar 

  • Yu WL, William A, Schoepp NG, Hannon MJ, Mayfield SP, Burkart MD (2011) Modifications of the metabolic pathways of lipid and triacylglycerol production in microalgae. Microb Cell Fact 10:91–101

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kshipra Gautam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Gautam, K., Jueppner, J. et al. UPLC-MS analysis of Chlamydomonas reinhardtii and Scenedesmus obliquus lipid extracts and their possible metabolic roles. J Appl Phycol 27, 1149–1159 (2015). https://doi.org/10.1007/s10811-014-0407-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-014-0407-2

Keywords

Navigation