Skip to main content
Log in

Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthörn tidal flat (southern North Sea)

  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

Twenty-five intertidal diatom species were isolated from the Solthörn tidal flat (Lower Saxony, southern North Sea) and grown in semi-continuous cultures under standardised conditions, in order to observe differences in their biochemical gross compositions (e.g. protein, lipid, carbohydrate and ash contents). Composition, expressed as % dry weight, indicated that the majority of species (52 %) contained only <15 % protein but had nearly twice the total amount of carbohydrate and two to three times higher ash content. In addition, most species contained a relatively constant percentage of lipids (19.4 to 25.6 %), whereas extraordinary high lipid contents (>30 %) were found for Amphora exigua, Gyrosigma spenceri, Pleurosigma angulatum and Gyrosigma littorale. Glucose, galactose, mannose and ribose constituted the majority of the sugars detected, although the levels of these varied between species. Lipid class composition showed high concentrations of phospholipids and galactolipids as major constituents (19–22 % and 40–43 % of total lipids). The major fatty acids in most species were 14:0, 16:0, 16:1(n-7) and 20:5(n-3). Significant differences in biochemical gross compositions were found in the temperature (10, 30 °C) and salinity tests (20, 35 PSU), suggesting special intracellular acclimatisation processes that provide possible explanations for the adaptability of the species to environmental variations and the distinct differences in the diatom assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ackman RG, Tocher CS, McLachlan J (1968) Marine phytoplankton fatty acids. J Fish Res Board of Can 25:1603–1620

    Article  CAS  Google Scholar 

  • Admiraal W (1977) Influence of light and temperature on the growth rate of estuarine benthic diatoms in culture. Mar Biol 39:1–9

    Article  Google Scholar 

  • Admiraal W (1984) The ecology of estuarine sediment inhabiting diatoms. In: Round FE, Chapmann DJ (eds) Progress in phycological research. Biopress, Bristol, pp 269–322

    Google Scholar 

  • Ahlgren G, Lundstedt L, Brett M, Forsberg C (1990) Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. J Plankton Res 12:809–818

    Article  CAS  Google Scholar 

  • Allan GG, Lewin J, Johnson PG (1972) Marine polymers. IV. Diatom polysaccharides. Bot Mar 15:102–108

    Article  CAS  Google Scholar 

  • Arab L, Akbar J (2002) Biomarkers and the measurement of fatty acids. Public Health Nutr 5:865–871

    Article  PubMed  Google Scholar 

  • Araújo SC, Garcia VMT (2005) Growth and biochemical composition of the diatom Chaetoceros cf. wighamii Brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. Aquaculture 246:405–412

    Article  Google Scholar 

  • Ben-Amotz A, Tornabene TG, Thomas WH (1985) Chemical profile of selected species of microalgae with emphasis on lipids. J Phycol 21:72–81

    Article  CAS  Google Scholar 

  • Blank C, Neumann MA, Makrides M, Gibson RA (2002) Optimizing DHA levels in piglets by lowering the linoleic acid to alpha-linolenic acid ratio. J Lipid Res 43:1537–1543

    Article  PubMed  CAS  Google Scholar 

  • Bligh EG, Dyer WJ (1959) Arapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ, Ayoubi P, Borchert C, Bressan RA, Burnap RL, Cushman JC, Cushman MA, Deyholos M, Fischer R, Galbraith DW (2001) A genomics approach towards salt stress tolerance. Plant Physiol Biochem 39:295–311

    Article  CAS  Google Scholar 

  • Bourdier GG, Amblard CA (1989) Lipids in Acanthodiaptomus denticornis during starvation and fed on three different algae. J Plankton Res 11:1201–1212

    Article  CAS  Google Scholar 

  • Brito A, Newton A, Tett P, Fernandes TF (2009) Temporal and spatial variability of microphytobenthos in a shallow lagoon: Ria Formosa (Portugal). Estuar Coast Shelf Sci 83:67–76

    Article  Google Scholar 

  • Brown MR, Jeffrey SW, Volkman JK, Dunstan GA (1997) Nutritional properties of microalgae for mariculture. Aquaculture 151:315–331

    Article  CAS  Google Scholar 

  • Buttery MJ (2000) Culture studies of two toxic dinoflagellate species, Alexandrium minutum and Gymnodinium catenatum. PhD Dissertation, Murdoch University, Perth, Western Australia

  • Chelf P (1990) Environmental control of lipid and biomass production in two diatom species. J Appl Phycol 2:121–129

    Article  Google Scholar 

  • Chu KH (1989) Chaetoceros gracilis as the exclusive feed for the larvae and postlarvae of the shrimp Metapenaeus ensis. Aquaculture 83:281–287

    Article  Google Scholar 

  • Dickson DMJ, Kirst GO (1987) Osmotic adjustment in marine eukaryotic algae: the role of inorganic ions, quaternary ammonium, tertiary sulfonium and carbohydrate solutes: 1. diatoms and a rhodophyte. New Phytol 106:645–655

    Article  CAS  Google Scholar 

  • Dunstan GA, Volkman JK, Barrett SM, Leroi JM, Jeffrey SW (1994) Essential polyunsaturated fatty acids from fourteen species of diatom (Bacillariophyceae). Phytochemistry 35:155–161

    Article  CAS  Google Scholar 

  • Fabregas J, Herrero C, Cabezas B, Abalde J (1985) Mass culture and biochemical variability of the marine microalgae Tetraselmis suecica Kylin (Butch) with high nutrient concentrations. Aquaculture 49:231–244

    Article  CAS  Google Scholar 

  • Fujii S, Nishimoto N, Notoya N, Hellebust JA (1995) Growth and osmoregulation of Chaetoceros muelleri in relation to salinity. Plant Cell Physiol 36:759–764

    CAS  Google Scholar 

  • Garza-Sánchez F, Chapman DJ, Cooper JB (2009) Nitzschia ovalis (Bacillariophyceae) mono lake strain accumulates 1,4/2,5 cyclohexanetetrol in response to increased salinity. J Phycol 45:395–403

    Article  Google Scholar 

  • Griffiths MJ, Harrison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Guillard RR (1975) Culture of phytoplankton for feeding marine invertebrates. In: Smith WL, Chanley MH (eds) Culture of marine invertebrate animals. Plenum, New York, pp 26–60

    Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced accumulation in plants. Plant Growth Reg 21:79–102

    Article  CAS  Google Scholar 

  • Harwood JL (1998) Membrane lipids in algae. In: Siegenthaler PA, Murata N (eds) Lipids in photosynthesis: structure, function and genetics. Kluwer Academic, Dordrecht, pp 53–64

    Google Scholar 

  • Hasle GR, Fryxell GA (1970) Diatoms: cleaning and mounting for light and electron microscopy. Trans Am Microscop Soc 89:469–474

    Article  Google Scholar 

  • Helliot B, MortainBertrand A (1999) Accumulation of proline in Dunaliella salina (Chlorophyceae) in response to light transition and cold adaptation. Effect on cryopreservation. Cryobiol Lett 20:287–296

    CAS  Google Scholar 

  • Hu Q (2004) Environmental effects on cell composition. In: Richmond A (ed) Handbook of microalgal culture: biotechnology and applied phycology. Blackwell Science Ltd, Oxford, pp 83–93

    Google Scholar 

  • Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacyglycerols as feedstocks for biofuel production: perspectives and advances. Plant J 54:621–639

    Article  PubMed  CAS  Google Scholar 

  • James CM, Al-Hinty S, Salman AE (1989) Growth and ω3 fatty acid and amino acid composition of microalgae under different temperature regimes. Aquaculture 77:337–357

    Article  CAS  Google Scholar 

  • Jüttner F (2001) Liberation of 5,8,11,14,17-eicosapentaenoic acid and other polyunsaturated fatty acids from lipids as a grazer defense reaction in epilithic diatom biofilms. J Phycol 37:744–755

    Article  Google Scholar 

  • Karsten U, Wiencke C, Kirst GO (1991) Growth pattern and β-dimethylsulphonio-propionate (DMSP) content of green macroalgae at different irradiance. Mar Biol 108:151–155

    Article  CAS  Google Scholar 

  • Kates M, Volcani BE (1966) Lipid composition of diatoms. Biochim Biophys Acta 116:264–278

    Article  PubMed  CAS  Google Scholar 

  • Kochert G (1978) Carbohydrate determined by the phenol-sulfuric acid method. In: Hellebust JA, Craigie JJ (eds) Handbook of phycological methods: physiological and biochemical methods. Cambridge University Press, Cambridge, pp 95–97

    Google Scholar 

  • Kreeger DA, Goulden CE, Kilham SS, Lynn SG, Datta S, Interlandi SJ (1997) Seasonal changes in the biochemistry of lake seston. Freshw Biol 38:539–554

    Article  CAS  Google Scholar 

  • Krell A (2006) Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus. Dissertation, University of Bremen, Germany

  • Lombardi AT, Wangersky PJ (1995) Particulate lipid class composition of three marine phytoplankters Chaetoceros gracilis, Isochrysis galbana (Tahiti) and Dunaliella tertiolecta grown in batch culture. Hydrobiologia 306:1–6

    Article  CAS  Google Scholar 

  • Lorenzen CJ (1967) Determination of chlorophyll and pheopigments: spectrophotometric equations. Limnol Oceanogr 12:343–346

    Article  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • Lynn SG, Kilham SS, Kreeger DA, Interlandi SJ (2000) Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacilliariophyceae). J Phycol 36:510–522

    Article  CAS  Google Scholar 

  • McGinnis KM, Dempster TA, Sommerfeld MR (1997) Characterization of the growth and lipid content of the diatom Chaetoceros muelleri. J Appl Phycol 9:19–24

    Article  CAS  Google Scholar 

  • Mercz TI (1994) A study of high lipid yielding microalgae with potential for large-scale production of lipids and polyunsaturated fatty acids. PhD Dissertation, Murdoch University, Perth, Western Australia

  • Mock T, Kroon BMA (2002) Photosynthetic energy conversion under extreme conditions. I. Important role of lipids as structural modulators and energy sink under N-limited growth in Antarctic sea ice diatoms. Phytochemistry 61:41–51

    Article  PubMed  CAS  Google Scholar 

  • Mortensen SH, Brsheim KY, Rainuzzo JR, Knutsen G (1988) Fatty acid and elemental composition of the marine diatom Chaetoceros gracilis Schütt. Effects of silicate deprivation, temperature and light intensity. J Exp Mar Biol Ecol 122:173–l85

    Article  CAS  Google Scholar 

  • Myklestad S (1974) Production of carbohydrates by marine planktonic diatoms. II. Comparison of nine different species in culture. J Exp Mar Biol Ecol 15:261–274

    Article  CAS  Google Scholar 

  • Myklestad SM (1995) Release of extracellular products by phytoplankton with special emphasis on polysaccharides. Sci Tot Environ 165:155–164

    Article  CAS  Google Scholar 

  • Myklestad S, Haug A, Larson B (1972) Production of carbohydrates by the marine diatoms Chaetoceros affinis var. willei (Gran) Hustedt. II. Preliminary investigation of the extracellular polysaccharide. J Exp Mar Biol Ecol 9:137–144

    Article  CAS  Google Scholar 

  • Özcimder M, Hammer WE (1980) Fractionation of fish oil fatty acid methylesters by means of argentation and reversed-phase high-performance liquid chromatography, and its utility in total fatty acid analysis. J Chrom 187:307–317

    Article  Google Scholar 

  • Parrish CC (1987) Separation of aquatic lipid classes by chromarod thin-layer chromatography with measurement by Iatroscan flame ionization detection. Can J Fish Aquat Sci 44:722–731

    Article  CAS  Google Scholar 

  • Parsons TR, Stephens K, Strickland JDH (1961) On the chemical composition of eleven species of marine phytoplankters. J Fish Res Board Can 18:1001–1016

    Article  CAS  Google Scholar 

  • Parsons T, Maita Y, Lalli M (1984) A manual of chemical and biological methods for seawater analysis. Pergamon, New York

    Google Scholar 

  • Paterson DM (1994) Microbiological mediation of sediment structure and behaviour. In Stal LJ, Caumette P (eds) Microbial Mats. NATO ASI Series, Springer-Verlag, Berlin, vol. G35, pp 97–109

  • Paul JS (1979) Osmoregulation in the marine diatom Cylindrotheca fusiformis. J Phycol 15:280–284

    Article  CAS  Google Scholar 

  • Pinckney J, Zingmark RG (1991) Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Mar Ecol Prog Ser 76:81–89

    Article  Google Scholar 

  • Reineck H-E (1983) Sediment and dynamical processes. In: Wolff WJ (ed) Ecology of the Wadden Sea. A A Balkema, Rotterdam, pp 6–49

    Google Scholar 

  • Renaud SM, Parry DL (1994) Microalgae for use in tropical aquaculture II: effect of salinity on growth, gross chemical composition and fatty acid composition of three species of marine microalgae. J Appl Phycol 6:347–356

    Article  CAS  Google Scholar 

  • Renaud SM, Parry DL, Thinh LV (1994) Microalgae for use in tropical aquaculture I: gross chemical and fatty acid composition of twelve species of microalgae from the Northern Territory Australian. J Appl Phycol 6:337–345

    Google Scholar 

  • Renaud SM, Zhou HC, Parry DL, Thinh L-V, Woo KC (1995) Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp., Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. (clone T.ISO). J Appl Phycol 7:595–602

    Article  CAS  Google Scholar 

  • Renaud SM, Thinh LV, Lambrinidis G, Parry DL (2002) Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211:195–214

    Article  CAS  Google Scholar 

  • Rysgaard S, Christensen PB, Nielsen LP (1995) Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating in fauna. Mar Ecol Prog Ser 126:111–121

    Article  CAS  Google Scholar 

  • Sato N, Murata N (1980) Temperature shift-induced responses in lipids in the blue-green alga, Anabaena variabilis: the central role of diacylmonogalactosyl glycerol in thermo-adaptation. Biochem Biophys Acta 619:353–366

    Article  PubMed  CAS  Google Scholar 

  • Scholz B, Liebezeit G (2012a) Growth responses of 25 benthic marine Wadden Sea diatoms isolated from the Solthörn tidal flat (southern North Sea) in relation to varying culture conditions. Diatom Res 27:65–73

    Article  Google Scholar 

  • Scholz B, Liebezeit G (2012b) Microphytobenthic communities in the Solthörn tidal flat (southern North Sea)—part I: seasonal and spatial variations of diatoms in relation to macronutrient supply. Eur J Phycol 47:105–119

    Article  CAS  Google Scholar 

  • Scholz B, Liebezeit G (2012c) Microphytobenthic communities in the Solthörn tidal flat (southern North Sea)—part II: seasonal and spatial variability of non-diatom components in relation to abiotic parameters. Eur J Phycol 47:120–137

    Article  Google Scholar 

  • Snoeijs P, Busse S, Potapova M (2002) The importance of diatom cell size in community analysis. J Phycol 38:265–272

    Article  Google Scholar 

  • Sundbäck K, Granéli E (1988) Influence of microphytobenthos on the nutrient flux between sediment and water: a laboratory study. Mar Ecol Prog Ser 43:63–69

    Article  Google Scholar 

  • Takagi H, Sakai K, Morida K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    Article  PubMed  CAS  Google Scholar 

  • Thompson PA, Guo M-X, Harrison PJ (1992) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J Phycol 28:481–488

    Article  CAS  Google Scholar 

  • Tsitsa-Tzardis E, Patterson GW, Wikfors GH, Gladu PK, Harrison D (1993) Sterols of Chaetoceros and Skeletonema. Lipids 28:465–467

    Article  CAS  Google Scholar 

  • Uemura M, Steponkus PL (2003) Modification of the intracellular sugar content alters the incidence of freeze induced membrane lesions of protoplasts isolated from Arabidopsis thaliana leaves. Plant Cell Environ 26:1083–1096

    Article  CAS  Google Scholar 

  • Underwood GJC (1994) Seasonal and spatial variation in epipelic diatom assemblages in the Severn Estuary. Diatom Res 9:451–472

    Article  Google Scholar 

  • Underwood GJC, Paterson DM (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn estuary. J Mar Biol Assoc U.K. 73:871–887

    Google Scholar 

  • Volkman JK, Jeffrey SW, Nichols PD, Rogers GI, Garland CD (1989) Fatty acid and lipid composition of 10 species of microalgae used in mariculture. J Exp Mar Biol Ecol 128:219–240

    Article  CAS  Google Scholar 

  • Wikfors GH, Twarog JW, Ukeles R (1984) Influence of chemical composition of algal food sources on growth of juvenile oysters, Crassostrea uirginica. Biol Bull 167:251–263

    Article  Google Scholar 

  • Wilson R, Sargent JR (1992) High-resolution separation of polyunsaturated fatty acids by argentation thin-layer chromatography. J Chromatogr 623:403–407

    Article  CAS  Google Scholar 

  • Zhang Z, Xiao Z, Linhardt RJ (2009) Thin layer chromatography for the separation and analysis of acidic carbohydrates. J Liq Chrom Relat Tech 32:1711–1732

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina Scholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scholz, B., Liebezeit, G. Biochemical characterisation and fatty acid profiles of 25 benthic marine diatoms isolated from the Solthörn tidal flat (southern North Sea). J Appl Phycol 25, 453–465 (2013). https://doi.org/10.1007/s10811-012-9879-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-012-9879-0

Keywords

Navigation