Skip to main content
Log in

Pieri and Littlewood–Richardson rules for two rows and cluster algebra structure

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

We study an algebra encoding a twice-iterated Pieri rule for the representations of the general linear group and prove that it has the structure of a cluster algebra. We also show that its cluster variables invariant under a unipotent subgroup generate the highest weight vectors of irreducible representations occurring in the decomposition of the tensor product of two irreducible representations of the general linear group one of whom is labeled by a Young diagram with less than or equal to two rows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126(1), 1–52 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  2. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  4. Fomin, S., Zelevinsky, A.: Cluster algebras: notes for the CDM-03 conference. In: Current Developments in Mathematics, pp. 1–34. Int. Press, Somerville (2003)

  5. Geiss, C., Leclerc, B., Schroer, J.: Partial flag varieties and preprojective algebras. Ann. Inst. Fourier 58(3), 825–876 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  6. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Graduate Texts in Mathematics, 255. Springer, Dordrecht (2009)

    Book  Google Scholar 

  7. Howe, R.: Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond. In: The Schur Lectures, pp. 1–182. Tel Aviv (1992); Israel Mathematical Conference Proceedings, 8. Bar-Ilan Univ., Ramat Gan (1995)

  8. Howe, R., Jackson, S., Lee, S.T., Tan, E.-C., Willenbring, J.: Toric degeneration of branching algebras. Adv. Math. 220(6), 1809–1841 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Howe, R., Kim, S., Lee, S.T.: Double Pieri algebras and iterated Pieri algebras for the classical groups (preprint)

  10. Howe, R., Lee, S.T.: Bases for some reciprocity algebras. I. Trans. Am. Math. Soc. 359(9), 4359–4387 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Howe, R., Lee, S.T.: Why should the Littlewood–Richardson rule be true? Bull. Am. Math. Soc. (N.S.) 49(2), 187–236 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Howe, R., Tan, E.-C., Willenbring, J.F.: A basis for the \(GL_n\) tensor product algebra. Adv. Math. 196(2), 531–564 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Howe, R., Tan, E.-C., Willenbring, J.: Reciprocity Algebras and Branching for Classical Symmetric Pairs. Groups and Analysis: The Legacy of Hermann Weyl. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  14. Kim, D., Kim, S.: Generators of highest weight vectors in the decomposition of the tensor product of two irreducible representations of \(GL(n)\) (preprint)

  15. Kim, S.: Distributive lattices, affine semigroups, and branching rules of the classical groups. J. Combin. Theory Ser. A 119, 1132–1157 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kim, S., Yacobi, O.: A basis for the symplectic group branching algebra. J. Algebr. Combin. 35(2), 269–290 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  17. Marsh, R.J.: Lecture Notes on Cluster Algebras. Zurich Lectures in Advanced Mathematics. European Mathematical Society (EMS), Zürich (2013)

  18. Molev, A.I.: Gelfand–Tsetlin Bases for Classical Lie Algebras, Handbook of Algebra, vol. 4. Elsevier/North-Holland, Amsterdam (2006)

    MATH  Google Scholar 

  19. Scott, J.S.: Grassmannians and cluster algebras. Proc. Lond. Math. Soc. (3) 92(2), 345–380 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Stanley, R.P.: Enumerative Combinatorics. Volume 1, Second Edition. Cambridge Studies in Advanced Mathematics, 49. Cambridge University Press, Cambridge (2012)

    Google Scholar 

  21. Williams, L.K.: Cluster algebras: an introduction. Bull. Am. Math. Soc. (N.S.) 51(1), 1–26 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Yacobi, O.: An analysis of the multiplicity spaces in branching of symplectic groups. Sel. Math. (N.S.) 16(4), 819–855 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We thank Hyun Kyu Kim and Kyungyong Lee for helpful discussions. This work was supported by a Korea University New Faculty Start-up Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangjib Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Yoo, S. Pieri and Littlewood–Richardson rules for two rows and cluster algebra structure. J Algebr Comb 45, 887–909 (2017). https://doi.org/10.1007/s10801-016-0728-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-016-0728-0

Keywords

Mathematics Subject Classification

Navigation