Skip to main content
Log in

Strong forms of linearization for Hopf monoids in species

  • Published:
Journal of Algebraic Combinatorics Aims and scope Submit manuscript

Abstract

A vector species is a functor from the category of finite sets with bijections to vector spaces; informally, one can view this as a sequence of \(S_n\)-modules. A Hopf monoid (in the category of vector species) consists of a vector species with unit, counit, product, and coproduct morphisms satisfying several compatibility conditions, analogous to a graded Hopf algebra. We say that a Hopf monoid is strongly linearized if it has a “basis” preserved by its product and coproduct in a certain sense. We prove several equivalent characterizations of this property and show that any strongly linearized Hopf monoid, which is commutative and cocommutative, possesses four bases, which one can view as analogs of the classical bases of the algebra of symmetric functions. There are natural functors which turn Hopf monoids into graded Hopf algebras, and applying these functors to strongly linearized Hopf monoids produces several notable families of Hopf algebras. For example, in this way, we give a simple unified construction of the Hopf algebras of superclass functions attached to the maximal unipotent subgroups of three families of classical Chevalley groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguiar, M., André, C., Benedetti, C., Bergeron, N., Chen, Z., Diaconis, P., Hendrickson, A., Hsiao, S., Isaacs, I.M., Jedwab, A., Johnson, K., Karaali, G., Lauve, A., Le, T., Lewis, S., Li, H., Magaard, K., Marberg, E., Novelli, J., Pang, A., Saliola, F., Tevlin, L., Thibon, J., Thiem, N., Venkateswaran, V., Vinroot, C.R., Yan, N., Zabrocki, M.: Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras. Adv. Math. 229, 2310–2337 (2012)

    Article  MathSciNet  Google Scholar 

  2. Aguiar, M., Bergeron, N., Sottile, F.: Combinatorial Hopf algebras and generalized Dehn–Sommerville relations. Compos. Math. 142(1), 1–30 (2006)

    Article  MathSciNet  Google Scholar 

  3. Aguiar, M., Bergeron, N., Thiem, N.: Hopf monoids from class functions on unitriangular matrices. Algebra Number Theory 7, 1743–1779 (2013)

    Article  MathSciNet  Google Scholar 

  4. Aguiar, M., Mahajan, S.: Monoidal Functors, Species and Hopf Algebras, Volume 29 of CRM Monograph Series. American Mathematical Society, Providence (2010)

    Google Scholar 

  5. Aguiar, M., Mahajan, S.: On the Hadamard product of Hopf monoids. Can. J. Math. 66(3), 481–504 (2014)

    Article  MathSciNet  Google Scholar 

  6. Aguiar, M., Mahajan, S.: Hopf monoids in the category of species. Contemp. Math. 585, 17–124 (2013)

    Article  MathSciNet  Google Scholar 

  7. Bergeron, N., Zabrocki, M.: The Hopf algebras of symmetric functions and quasi-symmetric functions in non-commutative variables are free and co-free. J. Algebra Appl. 8(4), 581–600 (2009)

    Article  MathSciNet  Google Scholar 

  8. André, C.A.M., Neto, A.M.: Supercharacters of finite unipotent groups of types \(B_n\), \(C_n\) and \(D_n\). J. Algebra 305, 394–429 (2006)

    Article  MathSciNet  Google Scholar 

  9. André, C.A.M., Neto, A.M.: Supercharacters of the Sylow \(p\)-subgroups of the finite symplectic and orthogonal groups. Pac. J. Math. 239, 201–230 (2009)

    Article  Google Scholar 

  10. André, C.A.M., Neto, A.M.: A supercharacter theory for the Sylow \(p\)-subgroups of the finite symplectic and orthogonal groups. J. Algebra 322, 1273–1294 (2009)

    Article  MathSciNet  Google Scholar 

  11. Andrews,S.: Supercharacters of unipotent groups defined by involutions, preprint (2013). arXiv:1311.1730v1

  12. Benedetti, C.: Combinatorial Hopf algebra of superclass functions of type \(D\). J. Algebr. Comb. 38(4), 767–783 (2013)

    Article  MathSciNet  Google Scholar 

  13. Bergeron, F., Labelle, G., Leroux, P.: Combinatorial Species and Tree-Like Structures. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  14. Bergeron, N., Reutenauer, C., Rosas, M., Zabrocki, M.: Invariants and coinvariants of the symmetric group in noncommuting variables. Can. J. Math. 60(2), 266–296 (2008)

    Article  MathSciNet  Google Scholar 

  15. Cartier, P.: A primer of Hopf algebras. In: Frontiers in Number Theory, Physics, and Geometry, vol. II, pp. 537–615. Springer, Berlin (2007)

  16. Diaconis, P., Isaacs, I.M.: Supercharacters and superclasses for algebra groups. Trans. Am. Math. Soc. 360, 2359–2392 (2008)

    Article  MathSciNet  Google Scholar 

  17. Eğecioğlu, Ö., Remmel, J.: The monomial symmetric functions and the Frobenius map. J. Comb. Theory Ser. A 54, 272–295 (1990)

    Article  Google Scholar 

  18. Gebhard, D.D., Sagan, B.E.: A chromatic symmetric function in noncommutating variables. J. Alg. Comb. 2, 227–255 (2001)

    Article  MathSciNet  Google Scholar 

  19. Grinberg, D., Reiner, V.: Hopf algebras in combinatorics. http://www.math.umn.edu/~reiner/Classes/HopfComb

  20. Grossman, R., Larson, R.G.: Hopf-algebraic structure of families of trees. J. Algebra 126(1), 184–210 (1989)

    Article  MathSciNet  Google Scholar 

  21. Hivert, F., Novelli, J.-C., Thibon, J.-Y.: Commutative combinatorial Hopf algebras. J. Algebr. Comb. 28(1), 65–95 (2008)

    Article  MathSciNet  Google Scholar 

  22. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42(1), 1–82 (1981)

    Article  MathSciNet  Google Scholar 

  23. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    Google Scholar 

  24. Marberg,E.: Strong forms of self-duality for Hopf monoids in species. Trans. Am. Math. Soc. arXiv:1312.4681

  25. Méndez,M.: Monoides, \(c\)-monoides, especies de möbius y coálgebras. Ph.D. thesis, Universidad Central de Venezuela (1989)

  26. Méndez, M., Yang, J.: Möbius species. Adv. Math. 85(1), 83–128 (1991)

    Article  MathSciNet  Google Scholar 

  27. Patras, F., Reutenauer, C.: On descent algebras and twisted bialgebras. Mosc. Math. J. 4(1), 199–216 (2004)

    MathSciNet  Google Scholar 

  28. Patras, F., Schocker, M.: Twisted descent algebras and the Solomon–Tits algebra. Adv. Math. 199(1), 151–184 (2006)

    Article  MathSciNet  Google Scholar 

  29. Patras, F., Schocker, M.: Trees, set compositions and the twisted descent algebra. J. Algebr. Comb. 28(1), 3–23 (2008)

    Article  MathSciNet  Google Scholar 

  30. Rosas, M.H., Sagan, B.E.: Symmetric functions in noncommuting variables. Trans. Am. Math. Soc. 358(1), 215–232 (2006)

    Article  MathSciNet  Google Scholar 

  31. Sagan, B.: The Symmetric Group. Representations, Combinatorial Algorithms, and Symmetric Functions, 2nd edn., Graduate Texts in Mathematics, vol. 203. Springer, New York (2001)

    Google Scholar 

  32. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  33. Stover, C.R.: The equivalence of certain categories of twisted Lie and Hopf algebras over a commutative ring. J. Pure Appl. Algebra 86(3), 289–326 (1993)

    Article  MathSciNet  Google Scholar 

  34. Wolf, M.C.: Symmetric functions of noncommuting elements. Duke Math. J. 2, 626–637 (1936)

    Article  MathSciNet  Google Scholar 

  35. Zelevinsky, A.V.: Representations of Finite Classical Groups: a Hopf Algebra Approach, Lecture Notes in Mathematics, vol. 869. Springer, Berlin (1981)

    Google Scholar 

Download references

Acknowledgments

I am grateful to Marcelo Aguiar for answering several questions about Hopf monoids in species, and to Carolina Benedetti for many helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Marberg.

Additional information

This research was conducted with support from the National Science Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marberg, E. Strong forms of linearization for Hopf monoids in species. J Algebr Comb 42, 391–428 (2015). https://doi.org/10.1007/s10801-015-0585-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10801-015-0585-2

Keywords

Navigation