Skip to main content
Log in

Li-insertion/extraction properties of three-dimensional Sn electrode prepared by facile electrodeposition method

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Toward the realization of reliable Li-ion batteries with high performance and safety, component materials such as those of the current collector and negative electrode require further innovation. Sn, one of the most promising negative-electrode materials, can be electrochemically fixed on a substrate without any binder or conductive additive. However, the pulverization of Sn-plated films on substrates caused by large volume changes during Li–Sn reactions is the main reason hindering the practical application of Sn-plated electrodes. In the present study, we developed an electrodeposited three-dimensional (3D) Cu substrate applied to underlayer of the electrode. The effect of substrate geometry on the charge–discharge performance of the Sn electrode was investigated. The 3D-Cu/Sn electrode exhibited superior cycling performance with a reversible capacity of 470 mA h g−1 even at the 300th cycle, whereas the Sn-plated electrode prepared on a typical flat Cu substrate showed a capacity of only 20 mA h g−1. The results demonstrated that the 3D structure played a key role in accommodating volumetric changes in the Sn to suppress electrode disintegration. The developed 3D-Cu substrate will be significantly useful as a current collector for alloy-based active materials.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mao O, Turner RL, Courtney IA, Fredericksen BD, Buckett MI, Krause LJ, Dahn JR (1999) Active/inactive nanocomposites as anodes for Li-Ion batteries. Electrochem Solid-State Lett 2:3–5

    Article  CAS  Google Scholar 

  2. Idota Y, Kubota T, Matsufuji A, Maekawa Y, Miyasaka T (1997) Tin-based amorphous oxide: a high-capacity Lithium-ion-storage material. Science 276:1395–1397

    Article  CAS  Google Scholar 

  3. Ui K, Kikuchi S, Kadoma Y, Kumagai N, Ito S (2009) Electrochemical characteristics of Sn film prepared by pulse electrodeposition method as negative electrode for lithium secondary batteries. J Power Sour 189:224–229

    Article  CAS  Google Scholar 

  4. Obrovac MN, Chevrier VL (2014) Alloy Negative electrodes for Li-Ion batteries. Chem Rev 114:11444–11502

    Article  CAS  Google Scholar 

  5. Shimizu M, Usui H, Suzumura T, Sakaguchi H (2015) Analysis of the deterioration mechanism of si electrode as a Li-Ion battery anode using raman microspectroscopy. J Phys Chem C 119:2975–2982

    Article  CAS  Google Scholar 

  6. Usui H, Shimizu M, Sakaguchi H (2013) Applicability of ionic liquid electrolytes to LaSi2/Si composite thick-film anodes in Li-ion battery. J Power Sources 235:29–35

    Article  CAS  Google Scholar 

  7. Ke FS, Huang L, Cai JS, Sun SG (2007) Electroplating synthesis and electrochemical properties of microporous Sn–Cu alloy electrode for Lithium-ion batteries. Electrochim Acta 52:6741–6747

    Article  CAS  Google Scholar 

  8. Hassoun J, Panero S, Simon P, Taberna PL, Scrosati B (2007) High-rate, long-life Ni–Sn nanostructured electrodes for Lithium-Ion batteries. Adv Mater 19:1632–1635

    Article  CAS  Google Scholar 

  9. Tan C, Qi G, Li Y, Guo J, Wang X, Kong D, Wang H, Zhang S (2012) Sn-Cu Alloy Materials With Optimized Nanoporous Structure And Enhanced Performance For Lithium-Ion batteries prepared by dealloying. Int J Electrochem Sci 7:10303–10312

    CAS  Google Scholar 

  10. Ke FS, Huang L, Wei HB, Cai JS, Fan XY, Yang FZ, Sun SG (2007) Fabrication and properties of macroporous tin–cobalt alloy film electrodes for lithium-ion batteries. J Power Sources 170:450–455

    Article  CAS  Google Scholar 

  11. Fan XY, Ke FS, Wei GZ, Huang L, Sun SG (2008) Microspherical Cu6Sn5 alloy anode for Lithium-Ion battery. Electrochem Solid-State Lett 11:A195–A197

    Article  CAS  Google Scholar 

  12. Kotobuki M, Okada N, Kanamura K (2011) Design of a micro-pattern structure for a three dimensionally macroporous Sn–Ni alloy anode with high areal capacity. Chem Commun 47:6144–6146

    Article  CAS  Google Scholar 

  13. Zhuo K, Jeong MG, Shin MS, Chun WW, Bae JW, Yoo PJ, Chung CH (2014) Morphological variation of highly porous Ni–Sn foams fabricated by electro-deposition in hydrogen-bubble templates and their performance as pseudo-capacitors. Appl Surf Sci 322:15–20

    Article  CAS  Google Scholar 

  14. Uysal M, Cetinkaya T, Alp A, Akbulut H (2015) Active and inactive buffering effect on the electrochemical behavior of Sn–Ni/MWCNT composite anodes prepared by pulse electrodeposition for lithium-ion batteries. J Alloys Compd 645:235–242

    Article  CAS  Google Scholar 

  15. Wada T, Yamada J, Kato H (2016) Preparation of three-dimensional nanoporous Si using dealloying by metallic melt and application as a lithium-ion rechargeable battery negative electrode. J Power Sources 306:8–16

    Article  CAS  Google Scholar 

  16. Zhang J, Zhan Y, Bian H, Li Z, Tsang CK, Lee C, Cheng H, Shu S, Li YY, Lu J (2014) Electrochemical dealloying using pulsed voltage waveforms and its application for supercapacitor electrodes. J Power Sources 257:374–379

    Article  CAS  Google Scholar 

  17. Joshi MK, Pant HR, Tiwari AP, Kim HJ, Park CH, Kim CS (2015) Multi-layered macroporous three-dimensional nanofibrous scaffold via a novel gas foaming technique. Chem Eng J 275:79–88

    Article  CAS  Google Scholar 

  18. Zhou C, Yang K, Wang K, Pei X, Dong Z, Hong Y, Zhang X (2016) Combination of fused deposition modeling and gas foaming technique to fabricated hierarchical macro/microporous polymer scaffolds. Mater Des 109:415–424

    Article  Google Scholar 

  19. Xue LJ, Xu YF, Huang L, Ke FS, He Y, Wang YX, Wei GZ, Li JT, Sun SG (2011) Lithium storage performance and interfacial processes of three dimensional porous Sn–Co alloy electrodes for lithium-ion batteries. Electrochim Acta 56:5979–5987

    Article  CAS  Google Scholar 

  20. Arai S, Kitamura T (2014) Simple method for fabrication of three-dimensional (3D) copper nanostructured architecture by electrodeposition. ECS Electrochem Lett 3:D7–D9

    Article  CAS  Google Scholar 

  21. Nie M, Abraham DP, Chen Y, Bose A, Lucht BL (2013) Silicon solid electrolyte interphase (SEI) of Lithium Ion battery characterized by microscopy and spectroscopy. J Phys Chem C 117:13403–13412

    Article  CAS  Google Scholar 

  22. Nguyen CC, Lucht BL (2014) Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in Lithium Ion batteries. J Electrochem Soc 161:A1933–A1938

    Article  Google Scholar 

  23. Courtney IA, Tse JS, Mao O, Hafner J, Dahn JR (1998) Ab initio calculation of the lithium-tin voltage profile. Phys Rev B 58:15583

    Article  CAS  Google Scholar 

  24. Shimizu M, Usui H, Matsumoto K, Nokami T, Itoh T, Sakaguchi H (2014) Effect of cation structure of ionic liquid on anode properties of Si electrodes for LIB. J Electrochem Soc 161:A1765–A1771

    Article  Google Scholar 

  25. Shimizu M, Usui H, Sakaguchi H (2016) Functional ionic liquid for enhancement of Li-ion transfer: effect of cation structure on charge–discharge performance of Li4Ti5O12 electrode. Phys Chem Chem Phys 18:5139–5147

    Article  CAS  Google Scholar 

  26. Yamada Y, Iriyama Y, Abe T, Ogumi Z (2010) Kinetics of electrochemical insertion and extraction of Lithium Ion at SiO. J Electrochem Soc 157:A26–A30

    Article  CAS  Google Scholar 

  27. Wu H, Chan G, Choi JW, Ryu I, Yao Y, McDowell MT, Lee SW, Jackson A, Yang Y, Yang Y, Hu L, Cui Y (2102) Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nature Nanotech 7:310–315

    Article  Google Scholar 

  28. Gauthier M, Mazouzi D, Reyter D, Lestriez B, Moreau P, Guyomard D, Roué L (2013) A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries. Energy Environ Sci 6:2145–2155

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Grant-in-Aid for Research Activity Start-up (No. 16H06838) and the Scientific Research B (No. 26289270) from the Japan Society for the Promotion of Science (JSPS). This work was supported in part by the Alumni Association “Wakasatokai” of the Faculty of Engineering, Shinshu University. The authors thank Mr. M. Umeki and Ms. M. Ueda for their kind assistance in CLSM measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susumu Arai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 900 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimizu, M., Munkhbat, M. & Arai, S. Li-insertion/extraction properties of three-dimensional Sn electrode prepared by facile electrodeposition method. J Appl Electrochem 47, 727–734 (2017). https://doi.org/10.1007/s10800-017-1075-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-017-1075-0

Keywords

Navigation