Skip to main content

Advertisement

Log in

Impact of cathode additives on the cycling performance of rechargeable alkaline manganese dioxide–zinc batteries for energy storage applications

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The impact of chemical additives [e.g., BaSO4, Sr(OH)2·8H2O, Ca(OH)2, and Bi2O3] on the cycling performance of rechargeable alkaline electrolytic manganese dioxide/Zn batteries has been studied. The additives were used in the cathode electrodes consisting of 5 wt% additive, γ-MnO2 (electrolytic manganese dioxide—EMD—80 wt%) and KS44 graphite (15 wt%) in prismatic-type electrode geometries. Powder X-ray diffraction analysis showed the formation of alkaline earth metal carbonates (BaCO3, SrCO3) when the electrodes come into contact with the highly alkaline (pH 15, 9 M KOH) electrolyte. The presence of dissolved carbonate in the electrolyte leads to a double replacement precipitation reaction leading to the formation of these carbonate species. These additives help with the cycle life of the electrolytic manganese dioxide cathode material. The overall energy efficiency of the cells is about 75%. Rate capability studies and equilibrium potential measurements by galvanostatic intermittent titration technique analysis indicate that ohmic polarization plays a significant role in the energy loss and should be improved for high power applications. Rechargeable alkaline batteries with electrolytic manganese dioxide/Zn chemistry provide a low-cost and an environmentally friendly solution for storage of energy. Improvement of this technology would be an important contribution in the area of energy storage applications.

Graphical Abstract

The impact of a number of chemical additives (e.g., BaSO4, Sr(OH)2·8H2O, Ca(OH)2 and Bi2O3) on the cycling performance of rechargeable alkaline EMD/Zn batteries has been studied. The additives were used in the cathode electrodes consisting of 5 wt% additive, γ-MnO2 (electrolytic manganese dioxide—EMD—80 wt%) and KS44 graphite (15 wt%) in prismatic-type electrode geometries. Powder X-ray diffraction analysis showed the formation of alkaline earth metal carbonates (BaCO3, SrCO3) when the electrodes come into contact with the highly alkaline (pH 15, 9 M KOH) electrolyte. The presence of dissolved carbonate in the electrolyte leads to a double replacement precipitation reaction leading to the formation of these carbonate species. These additives help with the cycle life of the EMD cathode material. The overall energy efficiency of the cells is about 75%. Rate capability studies and equilibrium potential measurements by galvanostatic intermittent titration technique analysis indicate that ohmic polarization plays a significant role in the energy loss and should be improved for high power applications. Rechargeable alkaline batteries with EMD/Zn chemistry provide a low-cost and an environmentally friendly solution for storage of energy. Improvement of this technology would be an important contribution in the area of energy storage applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Larcher D, Tarascon J-M (2014) Towards greener and more sustainable batteries for electrical energy storage. Nat Chem 7:19–29. doi:10.1038/nchem.2085

    Article  Google Scholar 

  2. Dunn B, Kamath H, Tarascon J-M (2011) Electrical energy storage for the grid: a battery of choices. Science 334(80):928–935. doi:10.1126/science.1212741

    Article  CAS  Google Scholar 

  3. Thackeray MM, Wolverton C, Isaacs ED (2012) Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium–ion batteries. Energy Environ Sci 5:7854. doi:10.1039/c2ee21892e

    Article  CAS  Google Scholar 

  4. Nataf K, Bradley TH (2016) An economic comparison of battery energy storage to conventional energy efficiency technologies in Colorado manufacturing facilities. Appl Energy 164:133–139. doi:10.1016/j.apenergy.2015.11.102

    Article  Google Scholar 

  5. Parra D, Patel MK (2016) Effect of tariffs on the performance and economic benefits of PV-coupled battery systems. Appl Energy 164:175–187. doi:10.1016/j.apenergy.2015.11.037

    Article  Google Scholar 

  6. Ma T, Yang H, Lu L (2015) Development of hybrid battery–supercapacitor energy storage for remote area renewable energy systems. Appl Energy 153:56–62. doi:10.1016/j.apenergy.2014.12.008

    Article  Google Scholar 

  7. Cho J, Jeong S, Kim Y (2015) Commercial and research battery technologies for electrical energy storage applications. Prog Energy Combust Sci 48:84. doi:10.1016/j.pecs.2015.01.002

    Article  Google Scholar 

  8. Biswal A, Tripathy C, Sanjay K (2015) RSC advances perspective on worldwide production, reserves and its role in electrochemistry. RSC Adv 5:58255–58283. doi:10.1039/C5RA05892A

    Article  CAS  Google Scholar 

  9. Ingale ND, Gallaway JW, Nyce M et al (2015) Rechargeability and economic aspects of alkaline zinc e manganese dioxide cells for electrical storage and load leveling. J Power Sources 276:7–18. doi:10.1016/j.jpowsour.2014.11.010

    Article  CAS  Google Scholar 

  10. Bhadra S, Hsieh AG, Wang MJ et al (2016) Anode characterization in zinc–manganese dioxide AA alkaline batteries using electrochemical-acoustic time-of-flight analysis. J Electrochem Soc 163:1050–1056. doi:10.1149/2.1201606jes

    Article  Google Scholar 

  11. Rus ED, Moon D, Bai J et al (2016) Electrochemical behavior of electrolytic manganese dioxide in aqueous KOH and LiOH solutions: a comparative study. J Electrochem Soc 163:356–363. doi:10.1149/2.1011602jes

    Article  Google Scholar 

  12. Kim SU, Monroe CW (2013) Increasing the rate capability of batteries with electrolyte flow. Appl Energy 103:207–211. doi:10.1016/j.apenergy.2012.09.028

    Article  CAS  Google Scholar 

  13. Devenney M, Donne SW, Gorer S (2004) Application of combinatorial methodologies to the synthesis and characterization of electrolytic manganese dioxide. J Appl Electrochem 34:643–651. doi:10.1023/B:JACH.0000021915.73788.4c

    Article  CAS  Google Scholar 

  14. Stani A, Taucher-Mautner W, Kordesch K, Daniel-Ivad J (2006) Development of flat plate rechargeable alkaline manganese dioxide–zinc cells. J Power Sources 153:405–412. doi:10.1016/j.jpowsour.2005.05.031

    Article  CAS  Google Scholar 

  15. Scherson D, Division C (1997) In situ X-ray absorption fine structure studies of a manganese dioxide electrode in a rechargeable MnO2/Zn alkaline battery environment. J Electrochem Soc 144:1598–1603

    Article  Google Scholar 

  16. Kozawa A, Powers RA (1966) The manganese dioxide electrode in alkaline electrolyte; the electron-proton mechanism for the discharge process from MnO2 to MnO1.5. J Electrochem Soc 113:870. doi:10.1149/1.2424145

    Article  CAS  Google Scholar 

  17. Bonakdarpour A, Mehta S, Xi W, Afonso G, Wilkinson D, Impact of BaSO4 additive on the cycling performance of MnO2/Zn alkaline batteries (article in preparation)

  18. Kannan AM, Bhavaraju S, Prado F et al (2002) Characterization of the bismuth-modified manganese dioxide cathodes in rechargeable alkaline cells. J Electrochem Soc 149:A483. doi:10.1149/1.1459713

    Article  CAS  Google Scholar 

  19. Daniel-Ivad J (2009) Zinc–manganese. Encycl Electrochem Power Sources 5:497–512

    Article  Google Scholar 

  20. Malloy AP, Donne SW (2008) Porosity changes during reduction of γ-MnO2 for aqueous alkaline applications. J Electrochem Soc 155:A817. doi:10.1149/1.2971193

    Article  CAS  Google Scholar 

  21. Minakshi M, Singh P, Carter M, Prince K (2008) The Zn–MnO2 battery: the influence of aqueous LiOH and KOH electrolytes on the intercalation mechanism. Electrochem Solid State Lett 11:A145. doi:10.1149/1.2932056

    Article  CAS  Google Scholar 

  22. Bailey MR, Donne SW (2012) The effect of barium hydroxide on the rechargeable performance of alkaline-MnO2. J Electrochem Soc 159:A999–A1004. doi:10.1149/2.047207jes

    Article  CAS  Google Scholar 

  23. Gilman S, Mansfeld F (1970) The effect of several electrode and electrolyte additives on the corrosion and polarization behavior of the alkaline zinc electrode. J Electrochem Soc 1:1328–1333. doi:10.1149/1.2407303

    Google Scholar 

  24. Mondoloni C (1992) Rechargeable alkaline manganese dioxide batteries. J Electrochem Soc 139:954. doi:10.1149/1.2069374

    Article  CAS  Google Scholar 

  25. Shen Y, Kordesch K (2000) Mechanism of capacity fade of rechargeable alkaline manganese dioxide zinc cells. J Power Sources 87:162–166. doi:10.1016/S0378-7753(99)00476-0

    Article  CAS  Google Scholar 

  26. Nevers DR, Peterson SW, Robertson L et al (2014) The effect of carbon additives on the microstructure and conductivity of alkaline battery cathodes. J Electrochem Soc 161:A1691–A1697. doi:10.1149/2.0771410jes

    Article  CAS  Google Scholar 

  27. Bailey MR, Donne SW (2011) Electrochemical impedance spectroscopy study into the effect of titanium dioxide added to the alkaline manganese dioxide cathode. J Electrochem Soc 158:A802. doi:10.1149/1.3586045

    Article  CAS  Google Scholar 

  28. Bailey MR, Denman JA, King BV, Donne SW (2012) Role of titanium dioxide in enhancing the performance of the alkaline manganese dioxide cathode. J Electrochem Soc 159:A158. doi:10.1149/2.080202jes

    Article  CAS  Google Scholar 

  29. Raghuveer V, Manthiram A (2005) Effect of BaBiO3 and Ba0.6K0.4BiO3 additives on the rechargeability of manganese oxide cathodes in alkaline cells. Electrochem Commun 7:1329–1332. doi:10.1016/j.elecom.2005.09.012

    Article  CAS  Google Scholar 

  30. Hertzberg B, Sviridov L, Stach EA et al (2014) A manganese-doped barium carbonate cathode for alkaline batteries. J Electrochem Soc 161:A835–A840. doi:10.1149/2.083405jes

    Article  CAS  Google Scholar 

  31. Minakshi M (2011) Alkaline-earth oxide modified MnO2 cathode: enhanced performance in an aqueous rechargeable battery. Ind Eng Chem Res 50:8792–8795. doi:10.1021/ie2001742

    Article  CAS  Google Scholar 

  32. Kordesch K, Gsellmann J (1984) Production of electrolytic manganese dioxide for alkaline cells. German Patent 3,337,568

  33. Taucher W, Kordesch K, Daniel-Ivad J (1992) Cathodes for zinc manganese dioxide cells having barium additives. WO 93/12551

  34. Daniel-Ivad J, Daniel-Ivad E, Book JR (2002) Additives for rechargeable alkaline manganese dioxide zinc cells. US Patent 6,361,899

  35. Balachandran D, Morgan D, Ceder G (2002) First principles study of H-insertion in MnO2. J Solid State Chem 166:91–103. doi:10.1006/jssc.2002.9564

    Article  CAS  Google Scholar 

  36. Roberge PR, Farahani M, Tomantschger K, Oran E (1994) Electrochemical characterization of flat-plate rechargeable alkaline manganese dioxide–zinc cells. J Power Sources 47:13–26. doi:10.1016/0378-7753(94)80046-4

    Article  CAS  Google Scholar 

  37. Zheng Y, Wang JM, Chen H et al (2004) Effects of barium on the performance of secondary alkaline zinc electrode. Mater Chem Phys 84:99–106. doi:10.1016/j.matchemphys.2003.11.015

    Article  CAS  Google Scholar 

  38. Reddy T (2010) Linden’s handbook of batteries, 4th edn. McGraw-Hill, New York

    Google Scholar 

  39. Raghuveer V, Manthiram A (2006) Role of TiB2 and Bi2O3 additives on the rechargeability of MnO2 in alkaline cells. J Power Sources 163:598–603. doi:10.1016/j.jpowsour.2006.09.029

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the National Science and Engineering Research Council of Canada for funding through a CRD (CRDPJ 418933) grant and OTI Inc. for financial support and Mr. Bill Coote for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Arman Bonakdarpour or David P. Wilkinson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehta, S.A., Bonakdarpour, A. & Wilkinson, D.P. Impact of cathode additives on the cycling performance of rechargeable alkaline manganese dioxide–zinc batteries for energy storage applications. J Appl Electrochem 47, 167–181 (2017). https://doi.org/10.1007/s10800-016-1034-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1034-1

Keywords

Navigation