Skip to main content
Log in

Methanol electro-oxidation on nanoporous metals formed by dealloying of Ag–Au–Pt alloys

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Novel nanoporous structures, with narrow distribution of pore and ligament sizes, were formed by electrochemical dealloying of ternary precursors (Ag–Au–Pt with platinum content of 1, 2, and 3 at.% and 77 at% of silver). These three-dimensional bicontinuous porous network structures proved to be active electrocatalysts for the methanol oxidation reaction. By changing the processing conditions (e.g., dealloying temperature) and/or post-dealloying treatments (e.g., exposure to moderately high temperature in the presence of air) of these structures, the characteristics of the resulting materials were modified (e.g., ligament size and platinum content on the surface of the ligaments) and with that their catalytic response. It was demonstrated that these high surface area nanostructures displayed enhanced specific activity and distinct surface reactivity compared with nanoporous gold formed by dealloying of Ag–Au alloy. Scanning electron microscopy, transmission electron microscopy, and electrochemical methods such as underpotential deposition of hydrogen and cyclic voltammetry were used to characterize the resulting nanoporous structures.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalyst for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  2. Bond JC, Louis C, Thompson DT (2006) Catalysis by gold. Imperial College Press, London

    Google Scholar 

  3. Meyer R, Lemire C, Shaikhutdinov ShK, Freund HJ (2004) Surface chemistry of catalysis gold. Gold Bull 37:72–124

    Article  CAS  Google Scholar 

  4. Dimitratos N, Lopez-Sanchez JA, Morgan D, Carley A, Prati L, Hutchings GJ (2007) Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalyst prepared using a sol immobilization technique. Catal Today 122:317–324

    Article  CAS  Google Scholar 

  5. Della Pina C, Falletta E, Rossi M (2008) Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold-copper catalyst. J Catal 260:384–386

    Article  CAS  Google Scholar 

  6. Abd El-Moemen A, Kučerová G, Behm RJ (2010) Influence of H2, CO2 and H2O on the activity and deactivation behavior of Au/CeO2 catalysts in the water gas shift reaction at 300°C. Appl Catal B 95:57–70

    Article  CAS  Google Scholar 

  7. Dimitratos N, Prati L (2005) Gold based bimetallic catalyst for liquid phase applications. Gold Bull 38:73–77

    Article  CAS  Google Scholar 

  8. McPherson JS, Thompson DT (2009) Selectivity of gold catalyst for applications of commercial interest. Top Catal 52:743–750

    Article  CAS  Google Scholar 

  9. Corma A, Garcia H (2008) Supported gold nanoparticles as catalysts for organic reactions. Chem Soc Rev 37:2096–2126

    Article  CAS  Google Scholar 

  10. Moulijn JA, van Diepen AE, Kapteijn F (2001) Catalyst deactivation: is it predictable? What to do? Appl Catal A 212:3–16

    Article  CAS  Google Scholar 

  11. Campbell CT, Parker SC, Starr DE (2002) The effect of size dependent nanoparticle energetics on catalyst sintering. Science 298:811–814

    Article  CAS  Google Scholar 

  12. Koga K, Ikeshoji T, Sugawara K (2004) Size and temperature-dependent structural transition in gold nanoparticles. Phys Rev Lett 92:115507

    Article  Google Scholar 

  13. Yeh YC, Creran B, Rotello VM (2012) Gold nanoparticles: preparation, properties and applications in bionanotechnology. Nanoscale 4:1871–1880

    Article  CAS  Google Scholar 

  14. Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications towards biology, catalysis, and nanotechnology. Chem Rev 104:293–346

    Article  CAS  Google Scholar 

  15. Haruta M (2002) Catalysis of gold nanoparticles deposited on metal oxides. Cattech 6:102–115

    Article  CAS  Google Scholar 

  16. Schubert MM, Hackenberg S, van Veen AC, Muhler M, Plzak V, Behm RJ (2001) CO oxidation over supported gold catalysts-“inert” and “active” support materials and their role for the oxygen supply during reaction. J Catal 197:113–122

    Article  CAS  Google Scholar 

  17. Comotti M, Li WC, Spliethoff B, Schuth F (2006) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924

    Article  CAS  Google Scholar 

  18. Fujita T, Guan PF, McKenna K, Lang XY, Hirata A, Zhang L, Tokunaga T, Arai S, Yamamoto Y, Tanaka N, Ishikawa Y, Asao N, Yamamoto Y, Erlebacher J, Chen MW (2012) Atomic origins of the high catalytic activity of nanoporous gold. Nat Mater 11:775–780

    Article  CAS  Google Scholar 

  19. Biener J, Wittstock A, Baumann TF, Weissmüller J, Bäumer M, Hamza AV (2009) Surface chemistry in nanoscale material. Materials 2:2404–2428

    Article  CAS  Google Scholar 

  20. Haruta M (2007) New generation of gold catalysts: nanoporous foams and tubes—is unsupported gold catalytically active? Chem Phys Chem 8:1911–1913

    CAS  Google Scholar 

  21. Zhang J, Liu P, Ma H, Ding Y (2007) Nanostructured porous gold for methanol electro-oxidation. J Phys Chem C 111:10382–10388

    Article  CAS  Google Scholar 

  22. Erlebacher J (2004) An atomistic description of dealloying: porosity evolution, the critical potential, and rate-limiting behaviour. J Electrochem Soc 151:C614–C626

    Article  CAS  Google Scholar 

  23. Ding Y, Chen M, Erlebacher J (2004) Metallic mesoporous nanocomposites for electrocatalysis. J Am Chem Soc 126:6876–6877

    Article  CAS  Google Scholar 

  24. Ge X, Wang R, Liu P, Ding Y (2007) Platinum-decorated nanoporous gold leaf for methanol electrooxidation. Chem Mater 19:5827–5829

    Article  CAS  Google Scholar 

  25. Zeis R, Mathur A, Fritz G, Lee J, Erlebacher J (2007) Platinum plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells. J Power Sources 165:65–72

    Article  CAS  Google Scholar 

  26. Snyder J, Asanithi P, Dalton AB, Erlebacher J (2008) Stabilized nanoporous metals by dealloying ternary alloy precursors. Adv Mater 20:4883–4886

    Article  CAS  Google Scholar 

  27. Vega AA, Newman RC (2014) Nanoporous metals fabricated through electrochemical dealloying of Ag–Au–Pt with systematic variation of Au: Pt ratio. J Electrochem Soc 161:C1–C10

    Article  CAS  Google Scholar 

  28. Mott D, Luo J, Njoki PN, Lin Y, Wang L, Zhong CJ (2007) Synergistic activity of gold-platinum alloy nanoparticle catalysts. Catal Today 122:378–385

    Article  CAS  Google Scholar 

  29. Zhao D, Xu B (2006) Enhancement of Pt utilization in electrocatalysts by using gold nanoparticles. Angew Chem Int Ed 45:4955–4959

    Article  CAS  Google Scholar 

  30. Stamenkovic VR, Mun BS, Arenz M, Mayrhofer KJJ, Lucas CA, Wang GF, Ross PN, Markovic NM (2007) Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloys surfaces. Nat Mater 6:241–247

    Article  CAS  Google Scholar 

  31. Gohda Y, Groß A (2007) Structure-reactivity for bimetallic electrodes: Pt overlayers and PtAu surface alloys on Au (111). J Electroanal Chem 607:47–53

    Article  CAS  Google Scholar 

  32. Wolter SD, Brown B, Parker CB, Stoner BR, Glass TJ (2010) The effect of gold on platinum oxidation in homogeneous Au-Pt electrocatalysts. Appl Surf Sci 257:1431–1436

    Article  CAS  Google Scholar 

  33. Brown B, Wolter SD, Stoner BR, Glass JT (2008) Alloying effects of co-sputtered gold-platinum thin films on the oxygen reduction reaction in acidic electrolyte. J Electrochem Soc 155:B852–B859

    Article  CAS  Google Scholar 

  34. Schwank J (1985) Gold in bimetallic catalysts. Gold Bull 18:2–10

    Article  CAS  Google Scholar 

  35. Pedersen MØ, Helveg S, Ruban A, Stensgaard I, Lægsgaard E, Nørskov JK, Besenbacher F (1999) How a gold substrate can increase the reactivity of a Pt overlayer. Surf Sci 426:395–409

    Article  CAS  Google Scholar 

  36. Zhang J, Ma H, Zhang D, Liu P, Tian F, Ding Y (2008) Electrocatalytic activity of bimetallic platinum-gold catalysts fabricated based on nanoporous gold. Phys Chem Chem Phys 10:3250–3255

    Article  CAS  Google Scholar 

  37. Vega AA, Newman RC (2014) Beneficial effects of adsorbate-induced surface segregation of Pt in nanoporous metals fabricated by dealloying of Ag-Au-Pt alloys. J Electrochem Soc 161:C11–C19

    Article  CAS  Google Scholar 

  38. Waszczuk P, Zelenay P, Sobkowski J (1995) Surface interaction of benzoic acid with a copper electrode. Electrochim Acta 40:1717–1721

    Article  CAS  Google Scholar 

  39. Kuźmierczyk K, Łukaszewski M, Siwek SRZH, Kotowski J, Czerwiński A (2002) Electrochemical behaviour of Pt-Au alloys. Pol J Chem 76:607–618

    Google Scholar 

  40. Trasatti S, Petrii OA (1992) Real surface area measurements in electrochemistry. J Electroanal Chem 327:353–376

    Article  CAS  Google Scholar 

  41. Hayes M, Kuhn AT (1980) Determination of platinum catalyst surface area with potentiodynamic techniques—effect of experimental parameters. Appl Surf Sci 6:1–14

    Article  CAS  Google Scholar 

  42. Biegler T, Rand DAJ, Woods R (1971) Limiting oxygen coverage on platinized platinum: relevance to determination of real platinum area by hydrogen adsorption. J Electroanal Chem Interfacial Electrochem 29:269–277

    Article  CAS  Google Scholar 

  43. Doña-Rodríguez JM, Herrera-Melián JA, Pérez-Peña J (2000) Determination of the real surface area of Pt electrodes by hydrogen adsorption using cyclic voltammetry. J Chem Educ 77:1195

    Article  Google Scholar 

  44. Chen PC (1999) Precipitation of barium carbonate in a pH-STAT semi-batch crystallizer. 14th international symposium on industrial crystallization. Institution of Chemical Engineers, Cambridge, pp 9–14

    Google Scholar 

  45. Kubota N, Sekimoto T, Shimizu K (1990) Precipitation of BaCO3 in a semi-batch reactor with double-tube gas injection nozzle. J Cryst Growth 102:434–440

    Article  CAS  Google Scholar 

  46. Teicher H (1955) Precipitation of barium carbonate. Anal Chem 27:1416–1418

    Article  CAS  Google Scholar 

  47. Bergbreiter A, Alves OB, Hoster HE (2010) Entropy effects in atom distribution and electrochemical properties of Au(x)Pt(1 − x)/Pt(111) surface alloys. Chem Phys Chem 11:1505–1512

    CAS  Google Scholar 

  48. Moroun F, Ozanam F, Magnussen OM, Behm RJ (2001) The role of atomic assembles in the reactivity of bimetallic electrocatalysts. Science 293:1811–1814

    Article  Google Scholar 

  49. Pourbaix M (1974) Atlas of Electrochemical equilibria in aquous solutions. NACE International, Houston

    Google Scholar 

  50. Borkowska Z, Tymosiak-Zielinska A, Shul G (2004) Electrooxidation of methanol on polycrystalline and single crystal gold electrodes. Electrochim Acta 49:1209–1220

    Article  CAS  Google Scholar 

  51. Hernández J, Solla-Gullón J, Herrero E, Aldaz A, Feliu JM (2006) Methanol oxidation on gold nanoparticles in alkaline media: unusual electrocatalytic activity. Electrochim Acta 52:1609–1662

    Article  Google Scholar 

  52. Abd El Rehim SS, Hassam HH, Ibrahim MAM, Amin MA (1998) Electrochemical behaviour of a silver electrode in NaOH solutions. Monatshefte fur Chemie 129:1103–1117

    CAS  Google Scholar 

  53. Assiongbon KA, Roy D (2005) Electro-oxidation of methanol on gold in alkaline media: adsorption characteristics of reaction intermediates studied using time resolved electro-chemical impedance and surface plasmon resonance techniques. Surf Sci 594:99–119

    Article  CAS  Google Scholar 

  54. Prabhuram J, Manoharan R (1998) Investigation of methanol oxidation on unsupported platinum electrodes in strong alkali and strong acid. J Power Sources 74:54–61

    Article  CAS  Google Scholar 

  55. Du Y, Xu JJ, Chen HY (2009) Ultrathin platinum film covered high-surface-area nanoporous gold for methanol electrooxidation. Electrochem Commun 11:1717–1720

    Article  CAS  Google Scholar 

  56. Lou Y, Maye MM, Han L, Luo J, Zhong CJ (2001) Gold-platinum alloy nanoparticles assembly as catalyst for methanol electrooxidation. Chem Commun 154:473–474

    Article  Google Scholar 

  57. Luo J, Maye MM, Kariuki NN, Wang L, Njoki P, Lin Y, Schadt M, Naslund HR, Zhong CJ (2005) Electrocatalytic oxidation of methanol: carbon-supported gold-platinum nanoparticle catalysts prepared by two phase protocol. Catal Today 99:291–297

    Article  CAS  Google Scholar 

  58. Wanjala BN, Luo J, Fang B, Mott D, Zhong CJ (2011) Gold-platinum nanoparticles: alloying and phase segregation. J Mater Chem 21:4012–4020

    Article  CAS  Google Scholar 

  59. Zhong CJ, Luo J, Njoki PN, Mott D, Wanjala B, Loukrakpam R, Lim S, Wang L, Fang B, Xu ZC (2008) Fuel cell technology: nano-engineered multimetallic catalysts. Energy Environ Sci 1:454–466

    Article  CAS  Google Scholar 

  60. Hao-Yu E, Scott K, Reeve RW (2003) A study of the anodic oxidation of methanol on Pt in alkaline solutions. J Electroanal Chem 547:17–24

    Article  CAS  Google Scholar 

  61. Geissman TA (2011) The cannizzaro reaction. Organic reactions. Wiley, New York, pp 94–113

    Chapter  Google Scholar 

  62. Wittstock A, Neumann B, Schaefer A, Dumbuya K, Kübel C, Biener MM, Zielasek V, Steinrück HP, Gottfried JM, Biener J, Hamza A, Baümer M (2009) Nanoporous Au: an unsupported pure gold catalyst? J Phys Chem C 113:5593–5600

    Article  CAS  Google Scholar 

  63. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature. Science 327:319–322

    Article  CAS  Google Scholar 

  64. Andreasen G, Nazzarro M, Ramirez J, Salvarezza RC, Arvia AJ (1996) Kinetics of particles coarsening at gold electrode/electrolyte solution interfaces followed by in situ scanning tunneling microscopy. J Electrochem Soc 143:466–471

    Article  CAS  Google Scholar 

  65. Doña JM, González-Velasco J (1993) Mechanism of surface diffusion of gold adatoms in contact with an electrolytic solution. J Phys Chem 97:4714–4719

    Article  Google Scholar 

  66. García MP, Gómez MM, Salvarezza RC, Arvia AJ (1993) Effect of the solution composition and the applied potential on the kinetics of roughness relaxation at gold electrodes in slightly acid electrolytes. J Electroanal Chem 347:237–246

    Article  Google Scholar 

  67. Wang C, van der Vliet D, More KL, Zaluzec NJ, Peng S, Sun SH, Daimon H, Wang GF, Greeley J, Pearson J, Paulikas AP, Karapetrov G, Strmcnik D, Markovic NM, Stamenkovic VR (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11:919–926

    Article  CAS  Google Scholar 

  68. Tripkovic AV, Gojkovic SL, Popovic KD, Lovic JD (2006) Methanol oxidation at platinum electrodes in acid solution: comparison between model and real catalysts. J Serb Chem Soc 71:1333–1343

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank D. Burns and J. A. Tang, from the Nuclear Magnetic Resonance Facility at the Department of Chemistry—University of Toronto, for their help in the performance of the NMR experiments. The authors wish also to acknowledge the financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger C. Newman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vega, A.A., Newman, R.C. Methanol electro-oxidation on nanoporous metals formed by dealloying of Ag–Au–Pt alloys. J Appl Electrochem 46, 995–1010 (2016). https://doi.org/10.1007/s10800-016-0978-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0978-5

Keywords

Navigation