Skip to main content
Log in

Poisson–Nernst–Planck model of multiple ion transport across an ion-selective membrane under conditions close to chlor-alkali electrolysis

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The assumption of electrochemical equilibrium at membrane–electrolyte interfaces is frequently accepted in a mathematical simulation of multiple ion transport (MIT) across a single-layer perfluorinated sulfonated cation-selective membrane (CM). This assumption is obviously inaccurate at high electric current loads typical of industrial applications, e.g. brine electrolysis. An assessment of this problem is one of the main objectives of this contribution. For this purpose, a one-dimensional stationary Poisson–Nernst–Planck (PNP) model was employed to describe MIT across a CM. The model input parameters used correspond closely to industrial chlor-alkali electrolysis. The model results are compared with those of an equivalent model published earlier that considered the classical Nernst–Planck equation and Donnan equilibrium at the CM–electrolyte interfaces (denoted as the DNP model). Both the DNP and the PNP models provide identical results at low current loads. However, a comparison at high current loads close to ‘industrial scale’ was impossible due to convergence problems of the DNP model. The ion transport numbers and membrane permselectivity were estimated by means of the PNP model. This model predicts conditions at the membrane interfaces close to thermodynamic equilibrium even in a current density range up to 10,000 A m−2. Additionally, the PNP model takes into account the kinetics of water autoprotolysis. It was shown that a high flux of OH ions across a CM effectively alkalizes the catholyte diffusion layer, ensuring a precipitation of alkaline earth cations outside the CM and thus minimizing internal CM blockage.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Abbreviations

c :

Molar concentration (mol m−3)

D :

Diffusion coefficient (m2 s−1)

F :

Faraday’s constant (F = 96484.56 C mol−1)

J :

Molar flux density (mol m−2 s−1)

j :

Local current density (A m−2)

k :

Hydraulic membrane permeability (m2)

k b , k f :

Kinetic rate constant of backward and forward reaction (m3 mol−1 s−1)

K w :

Water autoprotolysis equilibrium constant (K w  = 1 × 10−8 mol2 m−6)

N :

Number of ions included in the system

p :

Hydrostatic pressure (Pa)

q :

Space charge density (C m−3)

R :

Universal gas constant (R = 8.314 J K−1 mol−1)

S :

Source term (mol m−3 s−1)

t :

Transport number

T :

Absolute temperature (K)

U :

Voltage (V)

v :

Convective velocity (m s−1)

w :

Width (m)

x :

Coordinate (m)

z :

Valence number

ε r :

Relative permittivity of free water (ε r  = 78.5)

ε 0 :

Permittivity of vacuum (ε 0  = 8.8542 × 10−10 F m−1)

η :

Dynamic viscosity (kg m−1 s−1)

ϕ :

Electric potential (V)

σ :

Conductivity (S m−1)

ADL:

Anodic diffusion layer

CDL:

Cathodic diffusion layer

CM:

Cation-selective membrane

DER:

Donnan exclusion region

fix:

Fixed charge

i:

Ion

p:

Phase

ba:

Bulk anolyte

bc:

Bulk catholyte

p:

Phase

1D:

One-dimensional

ADL:

Anodic diffusion layer

CDL:

Cathodic diffusion layer

CM:

Cation-selective membrane

DER:

Donnan exclusion region

DNP:

Donnan–Nernst–Planck model

DNP1, DNP2:

Donnan equilibrium Nernst–Planck model 1 and 2

ISM:

Ion-selective membrane

MIT:

Multiple ion transport

PDE:

Partial differential equation

PNP:

Poisson–Nernst–Planck model

WSR:

Water splitting/recombination reaction

References

  1. Wirguin CH (1996) Recent advance in perfluorinated ionomer membranes: structure, properties and applications. J Mem Sci 120:1–33

    Article  Google Scholar 

  2. Di Noto V, Lavina S, Giffin GA, Negro E, Scrosati B (2011) Editorial, polymer electrolytes: present, past and future. Electrochim Acta 57:4–13

    Article  Google Scholar 

  3. Nagarale RK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interface Sci 119:97–130

    Article  CAS  Google Scholar 

  4. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288

    Article  CAS  Google Scholar 

  5. Kodym R, Panek P, Snita D, Tvrznik D, Bouzek K (2012) Macrohomogeneous approach to a two-dimensional mathematical model of an industrial-scale electrodialysis unit. J Appl Electrochem 42:645–666

    Article  CAS  Google Scholar 

  6. Kodým R, Drakselová M, Pánek P, Němeček M, Šnita D, Bouzek K (2015) Novel approach to mathematical modeling of the complex electrochemical systems with multiple phase interfaces. Electrochim Acta 179:538–555

    Article  Google Scholar 

  7. Panek P, Kodym R, Snita D, Bouzek K (2015) Spatially two-dimensional mathematical model of the flow hydrodynamics in a spacer-filled channel—the effect of inertial forces. J Mem Sci 492:588–599

    Article  CAS  Google Scholar 

  8. Lu J, Wang Y, Lu Y, Wang G, Kong L, Zhu J (2010) Numerical simulation of the electrodeionization (EDI) process for producing ultrapure water. Electrochim Acta 55:7188–7198

    Article  CAS  Google Scholar 

  9. Pletcher D, Walsh FC (1990) Industrial electrochemistry. University Press, Cambridge

    Google Scholar 

  10. Secanell M, Wishart J, Dobson P (2011) Computational design and optimization of fuel cells and fuel cell systems: a review. J Power Sources 196:3690–3704

    Article  CAS  Google Scholar 

  11. Hnát J, Paidar M, Schauer J, Žitka J, Bouzek K (2011) Polymer anion selective membranes for electrolytic splitting of water. Part I: stability of ion-exchange groups and impact of the polymer binder. J Appl Electrochem 41:1043–1052

    Article  Google Scholar 

  12. Hnát J, Paidar M, Schauer J, Žitka J, Bouzek K (2012) Polymer anion-selective membranes for electrolytic splitting of water. Part II: enhancement of ionic conductivity and performance under conditions of alkaline water electrolysis (2012). J Appl Electrochem 42:545–554

    Article  Google Scholar 

  13. Wang W, Li L, Li B, Wei X, Li L, Yang Z (2013) Recent progress in redox flow battery research development. Adv Funct Mater 23:970–986

    Article  CAS  Google Scholar 

  14. Veerman J, Saakes M, Metz SJ, Harmsen GJ (2011) Reverse electrodialysis: a validated process model for design and optimization. Chem Eng J 166:256–268

    Article  CAS  Google Scholar 

  15. Verbrugge MW, Hill RF (1992) Measurement of ionic concentration profiles in membranes during transport. Electrochim Acta 37:221

    Article  CAS  Google Scholar 

  16. Buck RP (1984) Kinetics of bulk and interfacial ionic motion: microscopic bases and limits for the Nernst–Planck equation applied to membrane systems. J Membr Sci 17:1–62

    Article  CAS  Google Scholar 

  17. van der Stegen JHG, van der Veen AJ, Weerdenburg H, Hogendoorn JA, Versteeg GF (1999) Application of the Maxwell-Stefan theory to the transport in ion-selective membranes used in the chlor–alkali electrolysis process. Chem Eng Sci 54:2501–2511

    Article  Google Scholar 

  18. Hogendoorn JA, van der Veen AJ, van der Stegen JHG, Kuipers JAM, Versteeg GF (2001) Application of the Maxwell–Stefan theory to the membrane electrolysis process model development and simulations. Comput Chem Eng 25:1251–1265

    Article  CAS  Google Scholar 

  19. Fila V, Bouzek K (2003) A mathematical model of multiple ion transport across an ion-selective membrane under current load conditions. J Appl Electrochem 33:675–684

    Article  CAS  Google Scholar 

  20. Fila V, Bouzek K (2008) The effect of convection in the external diffusion layer on the results of a mathematical model of multiple ion transport across an ion-selective membrane. J Appl Electrochem 38:1241–1252

    Article  CAS  Google Scholar 

  21. Manzanares JA, Murphy WD, Mafe S, Reiss H (1993) Numerical simulation of the nonequilibrium diffuse double layer in ion-exchange membranes. J Phys Chem 97:8524–8530

    Article  CAS  Google Scholar 

  22. Volgin VM, Davydov AD (2005) Ionic transport through ion-exchange and bipolar membranes. J Membr Sci 259:110–121

    Article  CAS  Google Scholar 

  23. van der Stegen JHG, Weerdenburg H, van der Veen AJ, Hogendoorn JA, Versteeg GF (1999) Application of the Pitzer model for the estimation of activity coefficients of electrolytes in ion selective membranes. Fluid Phase Equilib 157:181–196

    Article  Google Scholar 

  24. Kontturi K, Murtomäki L, Manzanares JA (2008) Ionic transport processes in electrochemistry and membrane science, 1st edn. Oxford University Press, Oxford

    Book  Google Scholar 

  25. Cwirko EH, Carbonell RG (1992) Ionic equilibria in ion-exchange membranes: a comparison of pore model predictions with experimental results. J Membr Sci 67:227

    Article  CAS  Google Scholar 

  26. Šnita D, Pačes M, Lindner J, Kosek J, Marek M (2001) Nonlinear behaviour of simple ionic systems in hydrogel in an electric field. Faraday Discuss 120:53–66

    Google Scholar 

  27. Přibyl M, Šnita D, Kubíček M (2006) Adaptive mesh simulations of ionic systems in micro-capillaries based on the estimation of transport times. Comput Chem Eng 30:674

    Article  Google Scholar 

  28. Lindner J, Šnita D, Marek M (2002) Modeling of ionic systems with a narrow acid–base boundary. Phys Chem Chem Phys 4:1348

    Article  CAS  Google Scholar 

  29. Van Parys H, Telias G, Nedashkivskyi V, Mollayb B, Vandendael I, Van Damme S, Deconinck J, Hubin A (2010) On the modeling of electrochemical systems with simultaneous gas evolution. Case study: the zinc deposition mechanism. Electrochim Acta 55:5709–5718

    Article  Google Scholar 

  30. Danielsson CO, Dahlkild A, Velin A, Behm M (2009) A model for the enhanced water dissociation on monopolar membranes. Electrochim Acta 54:2983–2991

    Article  CAS  Google Scholar 

  31. Jialin L, Yazhen W, Changying Y, Guangdou L, Hong S (1998) Membrane catalytic deprotonation effects. J Membr Sci 147:247–256

    Article  Google Scholar 

  32. Moore WJ (1963) Physical chemistry, 4th edn. Longmans Green & Co. Ltd, London

    Google Scholar 

  33. Onsanger L (1934) Deviations from Ohm’s law in weak electrolytes. J Chem Phys 2:512–599

    Google Scholar 

  34. Xu T (2002) Effect of asymmetry in a bipolar membrane on water dissociation—a mathematical analysis. Desalination 150:65–74

    Article  CAS  Google Scholar 

  35. Balster J, Srinkantharajah S, Sumbharaju S, Pünt I, Lammertink RGH, Stamatialis DF, Wessling M (2010) Tailoring the interface layer of the bipolar membrane. J Membr Sci 365(1–2):386–398

    Google Scholar 

  36. Simons R (1985) Water splitting in ion exchange membranes. Electrochim Acta 30:275

    Article  CAS  Google Scholar 

  37. Schlögl R (1966) Membrane permeation in systems far from equilibrium. Ber Bunsenges Phys Chem 70:400

    Google Scholar 

  38. Verbrugge MW, Hill RF (1990) Ion and solvent transport in ion-exchange membranes I: a macrohomogeneous mathematical model. J Electrochem Soc 137(3):886–893

    Article  CAS  Google Scholar 

  39. Verbrugge MW, Hill RF (1990) Transport phenomena in perfluorosulfonic acid membrane during the passage of current. J Electrochem Soc 137(4):1131–1138

    Article  CAS  Google Scholar 

  40. Liang YY, Fimbres Weihs GA, Wiley DE (2014) Approximation for modelling electro-osmotic mixing in the boundary layer of membrane systems. J Membr Sci 450:18–27

    Article  CAS  Google Scholar 

  41. Natzlet WC, Moore CB (1985) Recombination of H+ and OH In pure liquid water. J Phys Chem 89:2605–2612

    Article  Google Scholar 

  42. Cwirko EH, Carbonell RG (1992) Interpretation of transport coefficients in Nafion using a parallel pore model. J Membr Sci 67:227–247

    Article  CAS  Google Scholar 

  43. Gur Y, Ravina I, Babchin A (1978) On the electrical double layer theory. Part II. The Poisson–Boltzmann equation including hydration forces. J Colloid Interface Sci 64:333

    Article  CAS  Google Scholar 

  44. Guzmán-Garcia AG, Pintauro PN, Verbrugge MW, Hill RF (1990) Development of a space charge transport model for ion-exchange membranes. AIChE J 36(7):1061–1074

    Article  Google Scholar 

  45. Booth F (1951) The dielectric constant of water and the saturation effect. J Chem Phys 19:391

    Article  CAS  Google Scholar 

  46. Koter S, Narebska A (1987) Conductivity of ion exchange membranes II mobilities of ions and water. Electrochim Acta 32(3):455–458

    Article  CAS  Google Scholar 

  47. Narebska A, Koter S (1987) Conductivity of ion exchange membranes I convection conductivity and other components. Electrochim Acta 32(3):449–453

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial aid for this research by the Science Foundation (GACR) of the Czech Republic, Project No: 14-17351P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Kodým.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kodým, R., Fíla, V., Šnita, D. et al. Poisson–Nernst–Planck model of multiple ion transport across an ion-selective membrane under conditions close to chlor-alkali electrolysis. J Appl Electrochem 46, 679–694 (2016). https://doi.org/10.1007/s10800-016-0945-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-0945-1

Keywords

Navigation