Skip to main content
Log in

Fabrication and electrochemical performance of nanoflake MnO2@carbon fiber coaxial nanocables for supercapacitors

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Nanoflake MnO2@carbon fiber coaxial nanocables were fabricated by a facile electrochemical deposition-oxidation route. The morphology, structure, composition, and pseudocapacitive performance of the obtained composite material were evaluated by scanning electron microscope, X-ray diffraction, X-ray photoelectron spectroscopy, cyclic voltammetry, and galvanostatic charge–discharge measurements. The results show that the nanoflake MnO2 on the carbon fibers is highly amorphous and hydrous. The nanostructured material shows nearly symmetrical and rectangular CV curves in the scan-rate range from 2 to 50 mV s−1. When used as electrodes for supercapacitors, the material shows a capacitance of 511.8 F g−1 at 1 A g−1 (based on the mass of MnO2), excellent high-rate capability, and cycling stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  CAS  Google Scholar 

  2. Aghazadeh M (2012) Electrochemical preparation and properties of nanostructured Co3O4 as supercapacitor material. J Appl Electrochem 42:89–94

    Article  CAS  Google Scholar 

  3. Nagarajan N, Zhitomirsky I (2006) Cathodic electrosynthesis of iron oxide films for electrochemical supercapacitors. J Appl Electrochem 36:1399–1405

    Article  CAS  Google Scholar 

  4. Naveen AN, Selladurai S (2015) Novel low temperature synthesis and electrochemical characterization of mesoporous nickel cobaltite-reduced graphene oxide (RGO) composite for supercapacitor application. Electrochim Acta 173:290–301

    Article  CAS  Google Scholar 

  5. Nithya VD, Pandia K, Lee YS, Selvan RK (2015) Synthesis, characterization and electrochemical performances of nanocrystalline FeVO4 as negative and LiCoPO4 as positive electrode for asymmetric supercapacitor. Electrochim Acta 167:97–104

    Article  CAS  Google Scholar 

  6. Xu CJ, Kang FY, Li BH, Du HD (2010) Recent progress on manganese dioxide based supercapacitors. J Mater Res 25:1421–1432

    Article  CAS  Google Scholar 

  7. Wei WF, Cui XW, Chen WX, Ivey DG (2011) Manganese oxide-based materials as electrochemical supercapacitor electrodes. Chem Soc Rev 40:1697–1721

    Article  CAS  Google Scholar 

  8. Lu XH, Zheng DZ, Zhai T, Liu ZQ, Huang YY, Xie SL, Tong YX (2011) Facile synthesis of large-area manganese oxide nanorod arrays as a high-performance electrochemical supercapacitor. Energy Environ Sci 4:2915–2921

    Article  CAS  Google Scholar 

  9. Lei ZB, Zhang JT, Zhao XS (2012) Ultrathin MnO2 nanofibers grown on graphitic carbon spheres as high-performance asymmetric supercapacitor electrodes. J Mater Chem 22:153–160

    Article  CAS  Google Scholar 

  10. Xu CL, Zhao YQ, Yang GW, Li FS, Li HL (2009) Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. Chem Commun 2:7575–7577

    Article  Google Scholar 

  11. Chou SL, Wang JZ, Chew SY, Liu HK, Dou SX (2008) Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors. Electrochem Commun 10:1724–1727

    Article  CAS  Google Scholar 

  12. He YB, Li GR, Wang ZL, Su CY, Tong YX (2011) Single-crystal ZnO nanorod/amorphous and nanoporous metal oxide shell composites: controllable electrochemical synthesis and enhanced supercapacitor performances. Energy Environ Sci 4:1288–1292

    Article  CAS  Google Scholar 

  13. Ghaemi M, Ataherian F, Zolfaghari A, Jafari SM (2008) Charge storage mechanism of sonochemically prepared MnO2 as supercapacitor electrode: effects of physisorbed water and proton conduction. Electrochim Acta 53:4607–4614

    Article  CAS  Google Scholar 

  14. Wang GX, Tang QQ, Bao H, Li XW, Wang GC (2013) Synthesis of hierarchical sulfonated graphene/MnO2/polyaniline ternary composite and its improved electrochemical performance. J Power Sources 241:231–238

    Article  CAS  Google Scholar 

  15. Ranjusha R, Nair AS, Ramakrishna S, Anjali P, Sujith K, Subramanian KRV, Sivakumar N, Kim TN, Nair SV (2012) Ultrafine MnO2 nanowire based high performance thin film rechargeable electrodes: effect of surface morphology, electrolytes and concentrations. J Mater Chem 22:20465–20471

    Article  Google Scholar 

  16. Duay J, Sherrill SA, Gui Z, Gillette E, Lee SB (2013) Self-limiting electrodeposition of hierarchical MnO2 and M(OH)/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties. ACS Nano 7:1200–1214

    Article  CAS  Google Scholar 

  17. Kai K, Kobayashi Y, Yamada Y, Miyazaki K, Abe T, Uchimoto Y, Kageyama H (2012) Electrochemical characterization of single-layer MnO2 nanosheets as a high-capacitance pseudocapacitor electrode. J Mater Chem 22:14691–14695

    Article  CAS  Google Scholar 

  18. Xia H, Feng JK, Wang HL, Lai MO, Lu L (2010) MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors. J Power Sources 195:4410–4413

    Article  CAS  Google Scholar 

  19. Ni JP, Lu WC, Zhang LM, Yue BH, Shang XF, Lv Y (2009) Low-temperature synthesis of monodisperse 3D manganese oxide nanoflowers and their pseudocapacitance properties. J Phys Chem C 113:54–67

    Article  CAS  Google Scholar 

  20. Fan Z, Yan J, Wei T, Zhi L, Ning G, Li T (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21:2366–2375

    Article  CAS  Google Scholar 

  21. Yan J, Fan Z, Wei T, Qian W, Zhang W, Wei F (2010) Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes. Carbon 48:3825–3833

    Article  CAS  Google Scholar 

  22. Ramezani M, Fathi M, Mahboub F (2015) Facile synthesis of ternary MnO2/graphene nanosheets/carbon nanotubes composites with high rate capability for supercapacitor applications. Electrochim Acta 174:345–355

    Article  CAS  Google Scholar 

  23. Zhang JT, Zhao XS (2013) A comparative study of electrocapacitive properties of manganese dioxide clusters dispersed on different carbons. Carbon 52:1–9

    Article  CAS  Google Scholar 

  24. Zhang SW, Peng C, Ng KC, Chen GZ (2010) Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochim Acta 55:7447–7453

    Article  CAS  Google Scholar 

  25. Liu Y, Yan D, Li YH, Wu ZG, Zhuo RF, Li SK, Feng JJ, Wang J, Yan PX, Geng ZR (2014) Manganese dioxide nanosheet arrays grown on graphene oxide as an advanced electrode material for supercapacitors. Electrochim Acta 117:528–533

    Article  CAS  Google Scholar 

  26. Zhang YF, Zhang CX, Huang GX, Xing BL, Duan YL (2015) Synthesis and capacitive properties of manganese oxide nanoparticles dispersed on hierarchical porous carbons. Electrochim Acta 166:107–116

    Article  Google Scholar 

  27. Liu Z, Tan XL, Gao X, Song LH (2014) Synthesis of three-dimensionally ordered macroporous manganese dioxide–carbon nanocomposites for supercapacitors. J Power Sources 267:812–820

    Article  CAS  Google Scholar 

  28. Lei Y, Fournier C, Pascal JL, Favier F (2008) Mesoporous carbon–manganese oxide composite as negative electrode material for supercapacitors. Microporous Mesoporous Mater 110:167–176

    Article  CAS  Google Scholar 

  29. Patil UM, Sohn JS, Kulkarni SB, Park HG, Jung Y, Gurav KV, Kim JH, Jun SC (2014) A facile synthesis of hierarchical α-MnO2 nanofibers on 3D-graphene foam for supercapacitor application. Mater Lett 119:135–139

    Article  CAS  Google Scholar 

  30. Hu C-C, Tsou T-W (2002) Ideal capacitive behavior of hydrous manganese oxide prepared by anodic deposition. Electrochem Commun 4:105–109

    Article  CAS  Google Scholar 

  31. Reddy ALM, Shaijumon MM, Gowda SR, Ajayan PM (2009) Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett 9:1002–1006

    Article  CAS  Google Scholar 

  32. Pinaud BA, Chen Z, Abram DN, Jaramillo TF (2011) Thin films of sodium birnessite-type MnO2: optical properties, electronic band structure, and solar photoelectrochemistry. J Phys Chem C 115:11830–11838

    Article  CAS  Google Scholar 

  33. Wei WF, Cui XX, Chen WX, Ivey DG (2008) Phase-controlled synthesis of MnO2 nanocrystals by anodic electrodeposition: implications for high-rate capability electrochemical supercapacitors. J Phys Chem C 112:15075–15083

    Article  CAS  Google Scholar 

  34. Xiao W, Xia H, Fuh JYH, Lu L (2009) Electrochemical synthesis and supercapacitive properties of ε-MnO2 with porous/nanoflaky hierarchical architectures batteries and energy storage. J Electrochem Soc 156:A627–A633

    Article  CAS  Google Scholar 

  35. Toupin M, Brousse T, Belanger D (2004) Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem Mater 16:3184–3190

    Article  CAS  Google Scholar 

  36. Muller F, Masi R, Reinicke D, Steiner P, Hufner S, Stowe K (2002) Epitaxial growth of MnO/Ag(001) films. Surf Sci 520:158–172

    Article  CAS  Google Scholar 

  37. Sopcic S, Peter R, Petravic M, Mandic Z (2013) New insights into the mechanism of pseudocapacitance deterioration in electrodeposited MnO2 under negative potentials. J Power Sources 240:252–257

    Article  CAS  Google Scholar 

  38. Yu GH, Hu LB, Vosgueritchian M, Wang HL, Xie X, McDonough JR, Cui X, Cui Y, Bao ZA (2011) Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. Nano Lett 11:2905–2911

    Article  CAS  Google Scholar 

  39. Jiang RR, Huang T, Tang Y, Liu JL, Xue LG, Zhuang JH, Yu AS (2009) Factors influencing MnO2/multi-walled carbon nanotubes composite’s electrochemical performance as supercapacitor electrode. Electrochim Acta 54:7173–7179

    Article  CAS  Google Scholar 

  40. Jiang Y, Ling XT, Jiao Z, Li L, Ma QL, Wu MH, Chu YL, Zhao B (2015) Flexible of multiwalled carbon nanotubes/manganese dioxide nanoflake textiles for high-performance electrochemical capacitors. Electrochim Acta 153:246–253

    Article  CAS  Google Scholar 

  41. Gassa LM, Mishima HT, Mishima BAL, Vilche JR (1997) An electrochemical impedance spectroscopy study of electrodeposited manganese oxide films in borate buffers. Electrochim Acta 42:1717–1723

    Article  CAS  Google Scholar 

  42. Lee H-Y, Goodenough JB (1999) Supercapacitor behavior with KCl electrolyte. J Solid State Chem 144:220–223

    Article  CAS  Google Scholar 

  43. Wu M, Snook GA, Chen GZ, Fray DJ (2004) Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem Commun 6:499–540

    Article  CAS  Google Scholar 

  44. Xin HK, Fu WQ, Gang ZX, Lei WX (2006) Electrodeposition of nickel and cobalt mixed oxide/carbon nanotube thin films and their charge storage properties batteries, fuel cells, and energy conversion. J Electrochem Soc 153:A1568–A1574

    Article  Google Scholar 

  45. Chen Y, Wang J-W, Shi X-C, Chen BZ (2013) Pseudocapacitive characteristics of manganese oxide anodized from manganese coating electrodeposited from aqueous solution. Electrochim Acta 109:678–683

    Article  CAS  Google Scholar 

  46. Chun S-E, Pyun S-I, Lee G-J (2006) A study on mechanism of charging/discharging at amorphous manganese oxide electrode in 0.1 M Na2SO4 solution. Electrochim Acta 51:6479–6484

    Article  CAS  Google Scholar 

  47. Pang SC, Anderson MA, Chapman TW (2000) Novel electrode materials for thin film ultracapacitors: comparison of electrochemical properties of sol–gel-derived and electrodeposited manganese dioxide. J Electrochem Soc 147:444–450

    Article  CAS  Google Scholar 

  48. Zhang G, Li W, Xie K, Yu F, Huang H (2013) A one-step and binder-free method to fabricate hierarchical nickel-based supercapacitor electrodes with excellent performance. Adv Funct Mater 23:3675–3681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial supports of the National Natural Science Foundation of China (Grant No. 51374252) and the China Postdoctoral Science Foundation (Grant No. 2013M542139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Qin, WQ., Wang, JW. et al. Fabrication and electrochemical performance of nanoflake MnO2@carbon fiber coaxial nanocables for supercapacitors. J Appl Electrochem 46, 241–249 (2016). https://doi.org/10.1007/s10800-015-0898-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0898-9

Keywords

Navigation