Skip to main content
Log in

Electrochemical hydrogen-storage performance of Mg20−x Y x Ni10 (x = 0–4) alloys prepared by mechanical milling

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mg in Mg2Ni-type alloy was partially substituted with Y to improve the electrochemical performance of the alloy. The as-cast Mg2Ni-type Mg20−x Y x Ni10 (x = 0, 1, 2, 3, 4) electrode alloys were prepared by vacuum induction melting under the protection of high-purity helium atmosphere and subsequent mechanical milling for different time points. Effects of Y substitution with Mg on the microstructures and electrochemical performance of the as-cast and milled alloys were investigated in detail by X-ray diffraction, transmission electron microscopy, scanning electron microscopy coupled with energy-dispersive spectrometry, and automatic galvanostatic system. Results revealed that the substitution of Y with Mg evidently changed the phase composition of alloys. At a Y content of x ≤ 1, the major phase in alloys was Mg2Ni, but the phase changed to YMgNi4 + YMg3 with further addition of Y content. Electrochemical measurement showed that variations in the discharge capacity of alloys with Y content were closely related to the milling time. At ≤ 10-h milling time, the discharge capacity of alloy invariably increased with the increasing Y content; at > 10-h milling time, the discharge capacity initially increased, and then decreased with the increasing Y content. The substitution of Y with Mg dramatically ameliorated the cycle stability of the as-cast and milled alloys. Furthermore, high rate of discharge ability, electrochemical impedance spectrum, Tafel polarization curves, and potential-step measurements indicated that the electrochemical kinetic properties of the as-cast and milled alloys initially increased and then decreased with the increasing Y content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Jia Y, Sun CH, Shen SH, Zou J, Mao SS, Yao XD (2015) Combination of nanosizing and interfacial effect: future perspective for designing Mg-based nanomaterials for hydrogen storage. Renew Sustain Energy Rev 44:289–303

    Article  CAS  Google Scholar 

  2. Jain IP, Lal C, Jain A (2010) Hydrogen storage in Mg: a most promising material. Int J Hydrog Energy 35:5133–5144

    Article  CAS  Google Scholar 

  3. Mori D, Hirose K (2009) Recent challenges of hydrogen storage technologies for fuel cell vehicles. Int J Hydrog Energy 34:4569–4574

    Article  CAS  Google Scholar 

  4. Ebrahimi-Purkani A, Kashani-Bozorg SF (2008) Nanocrystalline Mg2Ni-based powders produced by high-energy ball milling and subsequent annealing. J Alloys Compd 456:211–215

    Article  CAS  Google Scholar 

  5. Atias-Adrian IC, Deorsola FA, Ortigoza-Villalba GA, DeBenedetti B, Baricco M (2011) Development of nanostructured Mg2Ni alloys for hydrogen storage applications. Int J Hydrog Energy 36:7897–7901

    Article  CAS  Google Scholar 

  6. Ohara R, Lan CH, Hwang CS (2013) Electrochemical and structural characterization of electroless nickelcoating on Mg2Ni hydrogen storage alloy. J Alloys Compd 580:S368–S372

    Article  CAS  Google Scholar 

  7. Xie DH, Li P, Zeng CX, Sun JW, Qu XH (2009) Effect of substitution of Nd for Mg on the hydrogen storage properties of Mg2Ni alloy. J Alloys Compd 478:96–102

    Article  CAS  Google Scholar 

  8. Zhao X, Han SM, Zhu Y, Chen XC, Ke DD, Wang ZB, Liu T, Ma YF (2015) Investigation on hydrogenation performance of Mg2Ni + 10 wt% NbN composite. J Solid State Chem 221:441–444

    Article  CAS  Google Scholar 

  9. Redzeb M, Zlatanova Z, Spassov T (2013) Influence of boron on the hydriding of nanocrystalline Mg2Ni. Intermetallics 34:63–68

    Article  CAS  Google Scholar 

  10. Lass EA (2011) Hydrogen storage measurements in novel Mg-based nanostructured alloys produced via rapid solidification and devitrification. Int J Hydrog Energy 36:10787–10796

    Article  CAS  Google Scholar 

  11. Kou HC, Hou XJ, Zhang TB, Hu R, Li JS, Xue XY (2013) On the amorphization behavior and hydrogenation performance of high-energy ball-milled Mg2Ni alloys. Mater Charact 80:21–27

    Article  CAS  Google Scholar 

  12. Teresiak A, Gebert A, Savyak M, Uhlemann M, Mickel C, Mattern N (2005) In situ high temperature XRD studies of the thermal behaviour of the rapidly quenched Mg77Ni18Y5 alloy under hydrogen. J Alloys Compd 398:156–164

    Article  CAS  Google Scholar 

  13. Drenchev N, Spassov T, Bliznakov S (2008) Influence of tin on the electrochemical and gas phase hydrogen sorption in Mg2−x Sn x Ni (x = 0, 0.1, 0.3). J Alloys Compd 450:288–292

    Article  CAS  Google Scholar 

  14. Dornheim M, Doppiu S, Barkhordarian G, Boesenberg U, Klassen T, Gutfleisch O, Bormann R (2007) Hydrogen storage in magnesium-based hydrides and hydride composites. Scr Mater 56:841–846

    Article  CAS  Google Scholar 

  15. Zhou NG, Ju DY (2014) Study on preparation and properties evaluation of Mg/Ni/Ti hydrogen storage material. Int J Hydrog Energy 39:19630–19636

    Article  CAS  Google Scholar 

  16. Li X, Yang T, Zhang YH, Zhao DL, Ren HP (2014) Kinetic properties of La2Mg17x wt% Ni (x = 0–200) hydrogen storage alloys prepared by ball milling. Int J Hydrog Energy 39:13557–13563

    Article  CAS  Google Scholar 

  17. Aono K, Orimo S, Fujii H (2000) Structural and hydriding properties of MgYNi4: a new intermetallic compound with C15b-type Laves phase structure. J Alloys Compd 309:L1–L4

    Article  CAS  Google Scholar 

  18. Zhang YH, Li C, Cai Y, Hu F, Liu ZC, Guo SH (2014) Highly improved electrochemical hydrogen storage performances of the Nd–Cu–added Mg2Ni-type alloys by melt spinning. J Alloys Compd 584:81–86

    Article  CAS  Google Scholar 

  19. Zhang YH, Zhao C, Yang T, Shang HW, Xu C, Zhao DL (2013) Comparative study of electrochemical performances of the as-melt Mg20Ni10−xMx (M = None, Cu Co, Mn; x = 0, 4) alloys applied to Ni/metal hydride (MH) battery. J Alloys Compd 555:131–137

    Article  CAS  Google Scholar 

  20. Ren HP, Zhang YH, Li BW, Zhao DL, Guo SH, Wang XL (2009) Influence of the substitution of La for Mg on the microstructure and hydrogen storage characteristics of Mg20−x La x Ni10 (x = 0–6) alloys. Int J Hydrog Energy 34:1429–1436

    Article  CAS  Google Scholar 

  21. Lenain C, Aymard L, Dupont L, Tarascon JM (1999) A new Mg0.9Y0.1Ni hydride forming composition obtained by mechanical grinding. J Alloys Compd 292:84–89

    Article  CAS  Google Scholar 

  22. Pan HG, Chen N, Gao MX, Li R, Lei YQ, Wang QD (2005) Effects of annealing temperature on structure and the electrochemical properties of La0.7Mg0.3Ni2.45Co0.75Mn0.1Al0.2 hydrogen storage alloy. J Alloys Compd 397:306–312

    Article  CAS  Google Scholar 

  23. Zheng G, Popov BN, White RE (1995) Electrochemical determination of the diffusion coefficient of hydrogen through an LaNi4.25Al0.75 electrode in alkaline aqueous solution. J Electrochem Soc 142:2695–2698

    Article  CAS  Google Scholar 

  24. Feng F, Northwood DO (2004) Hydrogen diffusion in the anode of Ni/MH secondary batteries. J Power Sources 136:346–350

    Article  CAS  Google Scholar 

  25. Kalinichenka S, Röntzsch L, Riedl T, Weißgärber T, Kieback B (2011) Hydrogen storage properties and microstructure of melt-spun Mg90Ni8RE2 (RE = Y, Nd, Gd). Int J Hydrog Energy 36:10808–10815

    Article  CAS  Google Scholar 

  26. Cui N, Luo JL (1999) Electrochemical study of hydrogen diffusion behavior in Mg2Ni-type hydrogen storage alloy electrodes. Int J Hydrog Energy 24:37–42

    Article  CAS  Google Scholar 

  27. Ratnakumar BV, Witham C, Bowman RC Jr, Hightower A, Fultz B (1996) Electrochemical studies on LaNi5−x Sn x metal hydride alloys. J Electrochem Soc 143:2578–2584

    Article  CAS  Google Scholar 

  28. Zhao XY, Ding Y, Ma LQ, Wang LY, Yang M, Shen XD (2008) Electrochemical properties of MmNi3.8Co0.75Mn0.4Al0.2 hydrogen storage alloy modified with nanocrystalline nickel. Int J Hydrog Energy 33:6727–6733

    Article  CAS  Google Scholar 

  29. Kuriyama N, Sakai T, Miyamura H, Uehara I, Ishikawa H, Iwasaki T (1993) Electrochemical impedance and deterioration behavior of metal hydride electrodes. J Alloys Compd 202:183–197

    Article  CAS  Google Scholar 

  30. Kleperis J, Wójcik G, Czerwinski A, Skowronski J, Kopczyk M, Beltowska-Brzezinska M (2001) Electrochemical behavior of metal hydrides. J Solid State Electrochem 5:229–249

    Article  CAS  Google Scholar 

  31. Nobuhara K, Kasai H, Diño WA, Nakanishi H (2004) H2 dissociative adsorption on Mg, Ti, Ni, Pd and La surfaces. Surf Sci 566–568:703–707

    Article  Google Scholar 

  32. Zhang YH, Li BW, Ren HP, Cai Y, Dong XP, Wang XL (2008) Cycle stabilities of the La0.7Mg0.3Ni2.55−x Co0.45M x (M = Fe, Mn, Al; x = 0, 0.1) electrode alloys prepared by casting and rapid quenching. J Alloy Compd 458:340–345

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundations of China (51161015 and 51371094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghuan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhai, T., Yang, T. et al. Electrochemical hydrogen-storage performance of Mg20−x Y x Ni10 (x = 0–4) alloys prepared by mechanical milling. J Appl Electrochem 45, 931–941 (2015). https://doi.org/10.1007/s10800-015-0861-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-015-0861-9

Keywords

Navigation