Skip to main content
Log in

Statistical optimization of industrial textile wastewater treatment by electrochemical methods

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, the Box–Behnken experimental design and the surface response methodology were applied for the optimization of the operational conditions of the electro-catalytic degradation of wastewaters, resulting from a local textile industry. The experiments were carried out in a laboratory scale batch cell reactor, with monopolar configuration, and electrodes made of boron-doped diamond (anode) and titanium (cathode). The multifactorial experimental design included the following variables: current density (i: 5–10 mA/cm2), pH (3–7), and submerged cathode area (CA: 8–24 cm2). To determine the process efficiency, the degradation percentage of: the chemical oxygen demand (%DCOD), the total organic carbon (%DTOC) and the color (%DC) were defined as response variables. The following optimal conditions for the electro-oxidation (EO) process were obtained: i = 10 mA/cm2, pH = 3 and CA = 16 cm2, reaching ca. 92 % of DC, 37 % of DCOD and 31 % of DTOC. The electro-Fenton (EF) and photo-electro-Fenton (PEF) processes were also evaluated at EO optimal conditions. For the EF process, with addition of iron (0.3 mM), the %DC, %DCOD and %DTOC was enhanced to 95, 52 and 45 %, respectively. For the PEF process (UV = 365 nm), it was possible to reach 98 %DC, 56 %DCOD and 48 %DTOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. US EPA 2011–US Environmental Protection Agency 2011. Available in: www.epa.gov

  2. Villanueva-Rodríguez M, Hernández-Ramírez A, Peralta-Hernández JM, Bandala ER, Quiroz-Alfaro MA (2009) Enhancing the electrochemical oxidation of Acid-Yellow 36 azo dye using boron-doped diamond electrodes by addition of ferrous ion. J Hazard Mater 167:1226–1230

    Article  Google Scholar 

  3. Ramírez C, Saldaña A, Hernández B, Acero R, Guerra R, Garcia-Segura S, Brillas E, Peralta-Hernández J (2012) Electrochemical oxidation of methyl orange azo dye at pilot flow plant using BDD technology. J Ind Eng Chem 19:571–579

    Article  Google Scholar 

  4. GilPavas E, Dobrosz-Gómez I, Gómez-García MA (2012) Decolorization and mineralization of Diarylide Yellow 12 (PY12) by photo-Fenton process: the response surface methodology as the optimization tool. Water Sci Technol 65:1795–1800

    Article  CAS  Google Scholar 

  5. Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigation. A review. Appl Catal B: Environ 49:1–14

    Article  CAS  Google Scholar 

  6. Ruiz J, Arias C, Brillas E, Hernández-Ramírez A, Peralta-Hernández JM (2011) Mineralization of Acid Yellow 36 azo dye by electro-Fenton and solar photoelectro-Fenton processes with a boron-doped diamond anode. Chemosphere 82:495–501

    Article  CAS  Google Scholar 

  7. Bandala ER, Pelaez MA, García AJ, Salgado MJ, Moeller G (2008) Photocatalytic decolorization of synthetic and real textile wastewater containing benzidine based azo dyes. Chem Eng Process 47:169–176

    Article  CAS  Google Scholar 

  8. Chacón JM, Leal MT, Sanchez M, Bandala ER (2006) Solar photocatalytic degradation of azo-dyes by photo-Fenton process. Dyes Pigments 69:144–150

    Article  Google Scholar 

  9. Parsons S (ed) (2004) Advanced oxidation processes for water and wastewater treatment. IWA Publishing, London

    Google Scholar 

  10. Maciel R, Sant’Anna GL Jr, Dezotti M (2004) Phenol removal from high salinity effluents using Fenton’s reagent and photo-Fenton reactions. Chemosphere 57:711–719

    Article  CAS  Google Scholar 

  11. Xiao Q, Si Z, Zhang J, Xiao C, Tan X (2008) Photoinduced hydroxyl radical and photocatalytic activity of samarium-doped TiO2 nanocrystalline. J Hazard Mater 150:62–67

    Article  CAS  Google Scholar 

  12. Yavuz Y, Shahbazi R (2012) Anodic oxidation of Reactive Black 5 dye using boron doped diamond anodes in a bipolar trickle tower reactor. Sep Purif Technol 85:130–136

    Article  CAS  Google Scholar 

  13. Cruz K, Torres O, García A, Brillas E, Hernández A, Peralta JM (2012) Optimization of electro-Fenton/BDD process for decolorization of a model azo dye wastewater by means of response surface methodology. Desalination 286:63–68

    Article  Google Scholar 

  14. Cruz K, Torres O, García A, Guzmán JL, Reyes LH, Hernández A, Peralta JM (2010) Determination of optimum operating parameters for Acid Yellow 36 decolorization by electro-Fenton process using BDD cathode. Chem Eng J 160:199–206

    Article  Google Scholar 

  15. Brillas E, Baños MA, Garrido JA (2003) Mineralization of herbicide 3, 6-dichloro-2-methoxybenzoic acid in aqueous medium by anodic oxidation, electro-Fenton and photoelectro-Fenton. Electrochim Acta 48:1697–1705

    Article  CAS  Google Scholar 

  16. Moreira FC, Garcia-Segura S, Vilar JP, Boaventura AR, Brillas E (2013) Decolorization and mineralization of Sunset Yellow FCF azo dye by anodic oxidation, electro-Fenton, UVA photoelectro-Fenton and solar photoelectro-Fenton processes. Appl Catal B: Environ 142–143:877–890

    Article  Google Scholar 

  17. Alves S, Ferreira T, Sabatini N, Trientini A, Migliorini F, Baldan M, Ferreira N, Lanza M (2012) A comparative study of the electrochemical oxidation of the herbicide tebuthiuron using boron-doped diamond electrodes. Chemosphere 88:155–160

    Article  CAS  Google Scholar 

  18. Yavuz Y, Koparal S, Ogutveren U (2010) Treatment of petroleum refinery wastewater by electrochemical methods. Desalination 258:201–205

    Article  CAS  Google Scholar 

  19. GilPavas E, Betancourt A, Ángulo M, Dobrosz-Gómez I, Gómez-García MA (2009) The Box–Behnken experimental design for the optimization of the electrocatalytic treatment of wastewaters with high concentrations of phenol and organic matter. Water Sci Technol 60:2809–2818

    Article  CAS  Google Scholar 

  20. American Public Health Association (APHA) (2005) Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association (APHA), Washington Centennial Edition

    Google Scholar 

  21. Gogate PR, Pandit AB (2004) A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res 8:501–551

    Article  CAS  Google Scholar 

  22. Montgomery DC (2010) Design and analysis of experiments, 8th edn. Wiley, Hoboken

    Google Scholar 

  23. Zarei M, Niaei A, Salari D, Khataee A (2010) Application of response surface methodology for optimization of peroxi-coagulation of textile dye solution using carbon nanotube-PTFE cathode. J Hazard Mater 173:544–551

    Article  CAS  Google Scholar 

  24. Panizza M, Cerisola G (2005) Application of diamond electrodes to electrochemical processes. Electrochim Acta 51:191–199

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to the Dirección de Investigación de la Universidad EAFIT, Medellin-Colombia and COLCIENCIAS, Young Researchers Program, for financial support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edison GilPavas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

GilPavas, E., Medina, J., Dobrosz-Gómez, I. et al. Statistical optimization of industrial textile wastewater treatment by electrochemical methods. J Appl Electrochem 44, 1421–1430 (2014). https://doi.org/10.1007/s10800-014-0767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0767-y

Keywords

Navigation