Skip to main content
Log in

Diffusion-controlled electrochemical growth of porous zinc oxide on microstructured electrode band arrays

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Films of zinc oxide were prepared by electrochemical deposition at constant electrode potential from an oxygen-saturated aqueous zinc-chloride solution on rotating microband electrode arrays of gold or silver on SiO2/Si wafers. Porous ZnO films were obtained by deposition in the presence of the xanthene dye eosinY as a structure-directing agent. The electrode size, the gap width, the number of electrode bands, the deposition time, and the rotation rate were varied. The growth of ZnO was monitored by the observed current, and the films were subsequently characterized by profilometry and by scanning electron and confocal laser microscopy. Strongly enhanced growth was observed at the edges of the electrode bands. This was explained by models of hemi-cylindrical diffusion revealing inhomogeneous mass transport to the electrodes. The models were extended to processes of electrochemical deposition. A model for diffusion-limited growth on microstructured electrode band arrays is proposed and applied to the present results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Klingshirn C (2007) ZnO: from basics towards applications. Phys Status Solidi B 244(9):3027–3073. doi:10.1002/pssb.200743072

    Article  CAS  Google Scholar 

  2. Özgür Ü, Alivov YI, Liu C et al (2005) A comprehensive review of ZnO materials and devices. J Appl Phys 98(4):041301-1–041301-103. doi:10.1063/1.1992666

    Article  Google Scholar 

  3. Salim NT, Aw KC, Gao W, Wright BE (2009) ZnO as dielectric for optically transparent non-volatile memory. Thin Solid Films 518(1):362–365. doi:10.1016/j.tsf.2009.06.033

    Article  CAS  Google Scholar 

  4. Yoshida T, Iwaya M, Ando H et al (2004) Improved photoelectrochemical performance of electrodeposited ZnO/eosinY hybrid thin films by dye re-adsorption. Chem Commun 4:400–401. doi:10.1039/b312127e

    Article  Google Scholar 

  5. Yoshida T, Zhang J, Komatsu D et al (2009) Electrodeposition of inorganic/organic hybrid thin films. Adv Funct Mater 19(1):17–43. doi:10.1002/adfm.200700188

    Article  CAS  Google Scholar 

  6. Toivola M, Halme J, Miettunen K, Aitola K, Lund PD (2009) Nanostructured dye solar cells on flexible substrates—review. Int J Energy Res 33(13):1145–1160. doi:10.1002/er.1605

    Article  CAS  Google Scholar 

  7. Stumpp M, Lupo C, Schlettwein D (2012) Preparation and characterization of electrodeposited ZnO on microstructured electrode arrays. J Electrochem Soc 159(12):D717–D723. doi:10.1149/2.041212jes

    Article  CAS  Google Scholar 

  8. Loewenstein T, Hastall A, Mingebach M et al (2008) Textile electrodes as substrates for the electrodeposition of porous ZnO. Phys Chem Chem Phys 10(14):1844–1847. doi:10.1039/b719691a

    Article  CAS  Google Scholar 

  9. Seddon BJ, Eddowes MJ, Firth A, Owen AE, Girault H (1991) Thin film electrode: a new method for the fabrication of submicrometer band electrodes. Electrochim Acta 36(56):763–771. doi:10.1016/0013-4686(91)85272-9

    Article  CAS  Google Scholar 

  10. Huangxian J, Hongyuan C, Hong G (1992) Investigation on microelectrodes. J Electroanal Chem 341:35–46. doi:10.1016/0022-0728(92)80473-H

    Article  Google Scholar 

  11. Ju H, Chen H, Gao H (1993) Investigation of microelectrodes. J Electroanal Chem 361(1–2):251–256. doi:10.1016/0022-0728(93)87061-Y

    Article  CAS  Google Scholar 

  12. Stulík K, Amatore C, Holub K, Marecek V, Kutner W (2000) Microelectrodes: definitions, characterization, and applications (technical report). Pure Appl Chem 72(8):1483–1492. doi:10.1351/pac200072081483

    Article  Google Scholar 

  13. Oldham KB (1981) Edge effects in semiinfinite diffusion. J Electroanal Chem Interfacial Electrochem 122:1–17. doi:10.1016/s0022-0728(81)80136-2

    Article  CAS  Google Scholar 

  14. Amatore C, Pebay C, Sella C, Thouin L (2012) Mass transport at microband electrodes: transient, quasi-steady-state, and convective regimes. ChemPhysChem 13(6):1562–1568. doi:10.1002/cphc.201100942

    Article  CAS  Google Scholar 

  15. Pebay C, Sella C, Thouin L, Amatore C (2013) Mass transport at infinite regular arrays of microband electrodes submitted to natural convection: theory and experiments. Anal Chem 85(24):12062–12069. doi:10.1021/ac403159j

    Article  CAS  Google Scholar 

  16. Aoki K, Tokuda K, Matsuda H (1987) Derivation of an approximate equation for chronoamperometric curves at microband electrodes and its experimental verification. J Electroanal Chem Interfacial Electrochem 230(1–2):61–67. doi:10.1016/0022-0728(87)80131-6

    Article  CAS  Google Scholar 

  17. Jin B, Qian W, Zhang Z, Shi H (1996) Application of the finite analytic numerical method. Part 1. diffusion problems on coplanar and elevated interdigitated microarray band electrodes. J Electroanal Chem 411(1–2):29–36. doi:10.1016/0022-0728(96)04594-9

    Article  Google Scholar 

  18. Alden JA, Booth J, Compton RG, Dryfe RA, Sanders GH (1995) Diffusional mass transport to microband electrodes of practical geometries: a simulation study using the strongly implicit procedure. J Electroanal Chem 389(1):45–54. doi:10.1016/0022-0728(95)03923-5

    Article  Google Scholar 

  19. Jahn D, Vielstich W (1962) Rates of electrode processes by the rotating disk method. J Electrochem Soc 109(9):849–852. doi:10.1149/1.2425567

    Article  CAS  Google Scholar 

  20. Mohr CM (1975) Mass transfer to an eccentric rotating disk electrode. J Electrochem Soc 122(7):928–931. doi:10.1149/1.2134372

    Article  CAS  Google Scholar 

  21. Gunawardena G, Hills G, Montenegro I, Scharifker B (1982) Electrochemical nucleation. J Electroanal Chem Interfacial Electrochem 138(2):225–239. doi:10.1016/0022-0728(82)85080-8

    Article  CAS  Google Scholar 

  22. Scharifker B, Hills G (1983) Theoretical and experimental studies of multiple nucleation. Electrochim Acta 28(7):879–889. doi:10.1016/0013-4686(83)85163-9

    Article  CAS  Google Scholar 

  23. Keil C, Schlettwein D (2011) Development of the field-effect mobility in thin films of F16PcCu characterized by electrical in situ measurements during device preparation. Org Electron 12(8):1376–1382. doi:10.1016/j.orgel.2011.04.016

    Article  CAS  Google Scholar 

  24. Weast RC (1980) Handbook of chemistry and physics: A ready-reference book of chemical and physical data. CRC Press, Boca Raton

    Google Scholar 

  25. Goux A, Pauporté T, Yoshida T, Lincot D (2006) Mechanistic study of the electrodeposition of nanoporous self-assembled ZnO/eosinY hybrid thin films: effect of eosin concentration. Langmuir 22(25):10545–10553. doi:10.1021/la061199h

    Article  CAS  Google Scholar 

  26. Raja J, Muralikrishnan B, Fu S (2002) Recent advances in separation of roughness, waviness and form. Precis Eng. 26:222–235. doi:10.1016/s0141-6359(02)00103-4

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support by the German Federal Ministry of Education and Research (BMBF) within the project KorTeSo (16SV4042) and by the Federal State of Hesse (STORE-E as part of the LOEWE program of excellence) and for experimental support by the MiNa laboratory (Univ. Giessen) and by the machine-shop of the Physics Department (Univ. Giessen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Schlettwein.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lupo, C., Stumpp, M. & Schlettwein, D. Diffusion-controlled electrochemical growth of porous zinc oxide on microstructured electrode band arrays. J Appl Electrochem 45, 105–113 (2015). https://doi.org/10.1007/s10800-014-0761-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0761-4

Keywords

Navigation