Skip to main content
Log in

Sn@Pt and Rh@Pt core–shell nanoparticles synthesis for glycerol oxidation

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The development and optimization of electrocatalysts for application in fuel cell systems have been the focus of a variety of studies where core–shell structures have been considered as a promising alternative among the materials studied. We synthesized core–shell nanoparticles of Sn x @Pt y and Rh x @Pt y (Sn@Pt, Sn@Pt2, Sn@Pt3, Rh@Pt, Rh@Pt2, and Rh@Pt3) through a reduction methodology using sodium borohydride. These nanoparticles were electrochemically characterized by cyclic voltammetry and further analyzed by cyclic voltammetry studying their catalytic activity toward glycerol electro-oxidation; chronoamperometry and potentiostatic polarization experiments were also carried out. The physical characterization was carried out by X-ray diffraction, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. The onset potential for glycerol oxidation was shifted in 130 and 120 mV on the Sn@Pt3/C and Rh@Pt3/C catalysts, respectively, compared to commercial Pt/C, while the stationary pseudo-current density, taken at 600 mV, increased 2-fold and 5-fold for these catalysts related to Pt/C, respectively. Thus, the catalysts synthesized by the developed methodology have enhanced catalytic activity toward the electro-oxidation of glycerol, representing an interesting alternative for fuel cell systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486:43–51

    Article  CAS  Google Scholar 

  2. Kaplan D, Burstein L, Rosenberg Y, Peled E (2011) Comparison of methanol and ethylene glycol oxidation by alloy and core–shell platinum based catalysts. J Power Sour 196:8286–8292

    Article  CAS  Google Scholar 

  3. Kowal A, Li M, Shao M, Sasaki K, Vukmirovic MB, Marinkovic NS, Liu P, Frenkel AI, Adzic RR (2009) Ternary Pt/Rh/SnO2 electrocatalysts for oxidizing ethanol to CO2. Nat Mater 24:1–6

    Google Scholar 

  4. Bergamaski K, Gonzalez ER, Nart FC (2008) Ethanol oxidation on carbon supported platinum–rhodium bimetallic catalysts. Electrochim Acta 53:4396–4406

    Article  CAS  Google Scholar 

  5. Teran FE, Santos DM, Ribeiro J, Kokoh KB (2012) Activity of PtSnRh/C nanoparticles for the electrooxidation of C1 and C2 alcohols. Thin Solid Films 520:5846–5850

    Article  CAS  Google Scholar 

  6. Salazar-Banda GR, Eguiluz KIB, Pupo MMS, Suffredini HB, Calegaro ML, Avaca LA (2012) The influence of different co-catalysts in Pt-based binary, ternary and quaternary electro-catalysts on the electro-oxidation of methanol and ethanol in acid media. J Electroanal Chem 668:13–25

    Article  CAS  Google Scholar 

  7. Martins CA, Fernández PS, Troiani HE, Martins ME, Camara GA (2014) Ethanol versus glycerol: understanding the lack of correlation between the oxidation currents and the production of CO2 on Pt nanoparticles. J Electroanal Chem 717–718:231–236

    Article  Google Scholar 

  8. Falase A, Main M, Garcia K, Serov A, Lau C, Atanassov P (2012) Electrooxidation of ethylene glycol and glycerol by platinum-based binary and ternary nano-structured catalysts. Electrochim Acta 66:295–301

    Article  CAS  Google Scholar 

  9. Grace AN, Pandian K (2006) Pt-Pd and Pt-Pd/Ru nanoparticles entrapped polyaniline electrodes: a potent electrocatalyst towards the oxidation of glycerol. Electrochem Commun 8:1340–1348

    Article  CAS  Google Scholar 

  10. Holade Y, Morais C, Arrii-Clacens S, Servat K, Napporn TW, Kokoh KB (2013) New Preparation of PdNi/C and PdAg/C Nanocatalysts for Glycerol Electrooxidation in Alkaline Medium. Electrocatalysis 4:167–178

    Article  CAS  Google Scholar 

  11. Liu X, Wang D, Li Y (2012) Synthesis and catalytic properties of bimetallic nanomaterials with various architectures. Nanotoday 7:448–466

    Article  CAS  Google Scholar 

  12. Wang JX, Ma C, Choi Y, Su D, Zhu Y, Liu P, Si R, Vukmirovic MB, Zhang Y, Adzic RR (2011) Kirkendall effect and lattice contraction in nanocatalysts: a new strategy to enhance sustainable activity. J Am Chem Soc 133:13551–13557

    Article  CAS  Google Scholar 

  13. Alayoglu S, Nilekar AU, Mavrikakis M, Eichhorn B (2008) Ru-Pt core–shell nanoparticles for preferential oxidation of carbon monoxide in hydrogen. Nat Mater 7:333–338

    Article  CAS  Google Scholar 

  14. Li M, Zhou WP, Marinkovic NS, Sasaki K, Adzic RR (2013) The role of rhodium and tin oxide in the platinum-based electrocatalysts for ethanol oxidation to CO2. Electrochim Acta 63:454–461

    Article  Google Scholar 

  15. Sun S, Zhang G, Geng D, Chen Y, Li R, Cai M, Sun X (2011) A highly durable platinum nanocatalyst for proton exchange membrane fuel cells: multiarmed starlike nanowire single crystal. Angew Chem Int Edit 50:422–426

    Article  CAS  Google Scholar 

  16. Suffredini HB, Salazar-Banda GR, Avaca LA (2009) Carbon supported electrocatalysts prepared by the sol-gel method and their utilization for the oxidation of methanol in acid media. J Sol-gel Sci Technol 49:131–136

    Article  CAS  Google Scholar 

  17. Souza LLA, Almeida GRO, Silva LSR, Bergamaski FOF, Lima AS, Eguiluz KIB, Salazar-Banda GR (2013) Outstanding electro-catalytic activity of Pt x –(RuO y –CeO2)1–x /C composites towards ethanol oxidation in acid media. J Appl Electrochem 43:953–965

    Article  CAS  Google Scholar 

  18. Warren BE (1969) X-ray diffraction. Addison-Wesley, Reading

    Google Scholar 

  19. Silva JCM, de Souza RFB, Parreira LS, Neto ET, Calegaro ML, Santos MC (2010) Ethanol oxidation reactions using SnO2@Pt/C as an electrocatalyst. Appl Catal B-Environ 99:265–271

    Article  CAS  Google Scholar 

  20. Santos VP, Tremiliosi Filho G (2001) Correlação entre a estrutura atômica superficial e o processo de adsorção-dessorção reversível de hidrogênio em eletrodos monocristalinos Pt(111), Pt(100) e Pt(110). Quim Nova 24:856–863

    Article  CAS  Google Scholar 

  21. Santos MC, Oliveira RTS, Pereira EC, Bulhões LOS (2005) Electrochemical and mass variation behaviour of rhodium oxide electrodes prepared by the polymeric precursor method. Thin Solid Films 483:164–168

    Article  CAS  Google Scholar 

  22. Colmati F, Tremiliosi Filho G, Gonzalez ER, Berná A, Herrero E, Feliu JM (2009) The role of the steps in the cleavage of the C–C bond during ethanol oxidation on platinum electrodes. Phys Chem Chem Phys 11:9114–9123

    Article  CAS  Google Scholar 

  23. Salazar-Banda GR, Suffredini HB, Avaca LA, Machado SAS (2009) Methanol and ethanol electro-oxidation on Pt–SnO2 and Pt–Ta2O5 sol–gel-modified boron-doped diamond surfaces. Mater Chem Phys 117:434–442

    Article  CAS  Google Scholar 

  24. Spinacé EV, Dias RR, Brandalise M, Linardi M, Neto AO (2010) Electro-oxidation of ethanol using PtSnRh/C electrocatalysts prepared by an alcohol-reduction process. Ionics 16:91–95

    Article  Google Scholar 

  25. García-Rodriguez S, Somodi F, Borbath I, Margitfalvi JL, Pena MA, Fierro JLG, Rojas S (2009) Controlled synthesis of Pt–Sn/C fuel cell catalysts with exclusive Sn–Pt interaction: application in CO and ethanol electrooxidation reactions. Appl Catal B-Environ 91:83–91

    Article  Google Scholar 

  26. Gomes JF, Martins CA, Giz MJ, Tremiliosi Filho G, Camara GA (2013) Insights into the adsorption and electro-oxidation of glycerol: self-inhibition and concentration effects. J Catal 301:154–161

    Article  CAS  Google Scholar 

  27. Lin R, Cao C, Zhao T, Huang Z, Li B, Wieckowski A, Ma J (2013) Synthesis and application of core − shell Co@Pt/C electrocatalysts for proton exchange membrane fuel cells. J Power Sour 223:190–198

    Article  CAS  Google Scholar 

  28. Sieben JM, Comignani V, Alvarez AE, Duarte MME (2014) Synthesis and characterization of Cu core Pt–Ru shell nanoparticles for the electro-oxidation of alcohols. Int J Hydrog Energ 39:8667–8674

    Article  CAS  Google Scholar 

  29. Sarkar A, Manthiram A (2010) Synthesis of Pt@Cu core–shell nanoparticles by galvanic displacement of Cu by Pt4+ ions and their application as electrocatalysts for oxygen reduction reaction in fuel cells. J Phys Chem C 114:4725–4732

    Article  CAS  Google Scholar 

  30. Cochell T, Manthiram A (2012) Pt@PdxCuy/C core–shell electrocatalysts for oxygen reduction reaction in fuel cells. Langmuir 28:1579–1587

    Article  CAS  Google Scholar 

  31. Shibata T, Bunker BA, Zhang Z, Meisel D, Vardeman CF, Gezelter JD (2002) Size-dependent spontaneous alloying of Au-Ag nanoparticles. J Am Chem Soc 124:11989–11996

    Article  CAS  Google Scholar 

  32. Boudart M (1984) Kinetics of heterogeneous catalytic reactions. Princeton University Press, Princeton

    Google Scholar 

  33. Taufany F, Pan CJ, Rick J, Chou HL, Tsai MC, Hwang BJ, Liu DG, Lee JF, Tang MT, Lee YC, Chen CI (2011) Kinetically controlled autocatalytic chemical process for bulk production of bimetallic core-shell structured nanoparticles. ACS Nano 5:9370–9381

    Article  CAS  Google Scholar 

  34. Hufner S, Wertheim GK (1975) Core-line asymmetries in the X-ray photoemission spectra of metals: a comment. Phys Rev B 11:5197–5198

    Article  Google Scholar 

  35. Sun S, Yang D, Villers D, Zhang G, Sacher E, Dodelet J-P (2008) Template-and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv Mater 20:571–574

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank the National Council of Technological and Scientific Development-CNPq (Grants 303630/2012-4, 402243/2012-9, 474261/2013-1 and 481788/2010-7) and CAPES from Brazil for the scholarships and financial support provided for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giancarlo R. Salazar-Banda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pupo, M.M.S., López-Suárez, F.E., Bueno-López, A. et al. Sn@Pt and Rh@Pt core–shell nanoparticles synthesis for glycerol oxidation. J Appl Electrochem 45, 139–150 (2015). https://doi.org/10.1007/s10800-014-0757-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0757-0

Keywords

Navigation