Skip to main content
Log in

Electrochemical study of TiO2 modified with silver nanoparticles upon CO2 reduction

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A systematic cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) study on titanium dioxide (TiO2) and silver–TiO2 surfaces was performed in order to decouple electrochemical reduction processes of carbon dioxide in aqueous solutions. CV studies indicate cathodic current increase on Ag–TiO2 compared to bare TiO2 surfaces. An equivalent circuit based on transmission line model was applied in order to adjust EIS data, and a modification of this model was made to account for Ag particle interaction with the electrolyte solution. Electrochemical processes were then decoupled upon applied potential where the role of TiO2 surface states was identified and separated from (a) silver reduction, (b) electronic transport on TiO2, and (c) charge transfer on TiO2 and Ag surfaces. The Ag–electrolyte interface impedance has considerably lower values than the TiO2–electrolyte interface, suggesting that the silver particles may be considered as favorable reaction sites for the electrochemical reduction of water and carbon dioxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kindzierski WB, Small CC, Fang Y, Bari MdA, Hashisho Z (2012) Automotive wastes. Water Environ Res 84:1407–1431. doi:10.2175/106143012X13407275695247

    Article  CAS  Google Scholar 

  2. Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333. doi:10.1126/science.1188566

    Article  CAS  Google Scholar 

  3. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP (2012) Photochemical and photoelectrochemical reduction of CO2. Annu Rev Phys Chem 63:541–569. doi:10.1146/annurev-physchem-032511-143759

    Article  CAS  Google Scholar 

  4. Omae I (2006) Aspects of carbon dioxide utilization. Catal Today 115:33–52. doi:10.1016/j.cattod.2006.02.024

    Article  CAS  Google Scholar 

  5. Genovese C, Ampelli C, Perathoner S, Centi G (2013) Electrocatalytic conversion of CO2 to liquid fuels using nanocarbon-based electrodes. J Energy Chem 22:202–213. doi:10.1016/S2095-4956(13)60026-1

    Article  CAS  Google Scholar 

  6. Monnier A, Augustynski J, Stalder C (1980) On the electrolytic reduction of carbon dioxide at TiO2 and TiO2–Ru cathodes. J Electroanal Chem Interfacial Electrochem 112:383–385. doi:10.1016/S0022-0728(80)80420-7

    Article  CAS  Google Scholar 

  7. Zhang L, Wang J, Zhang H, Cai W (2010) A novel fabrication of RuO2/TiO2 nanofilms for electrocatalytic reduction of CO2. Acta Chim Sinica 68:590–593

    CAS  Google Scholar 

  8. Qu J, Zhang X, Wang Y, Xie C (2005) Electrochemical reduction of CO2 on RuO2/TiO2 nanotubes composite modified Pt electrode. Electrochim Acta 50:3576–3580. doi:10.1016/j.electacta.2004.11.061

    Article  CAS  Google Scholar 

  9. Yui T, Tamaki Y, Sekizawa K, Ishitani O (2011) Photocatalytic reduction of CO2: from molecules to semiconductors. Photocatalysis 303:151–184. doi:10.1007/128_2011_139

    Article  CAS  Google Scholar 

  10. Kočí K, Matějů K, Obalová L, Krejčíková S, Lacný Z, Plachá D, Čapek L, Hospodková A, Šolcová O (2010) Effect of silver doping on the TiO2 for photocatalytic reduction of CO2. Appl Catal B 96:239–244. doi:10.1016/j.apcatb.2010.02.030

    Article  CAS  Google Scholar 

  11. de Levie R (1963) On porous electrodes in electrolyte solutions: I. Capacitance effects. Electrochim Acta 8:751–780. doi:10.1016/0013-4686(63)80042-0

    Article  Google Scholar 

  12. Fabregat-Santiago F, García Belmonte G, Bisquert J, Zaban A, Salvador P (2002) Decoupling of transport, charge storage, and interfacial charge transfer in the nanocrystalline TiO2/electrolyte system by impedance methods. J Phys Chem B 106:334–339. doi:10.1021/jp0119429

    Article  CAS  Google Scholar 

  13. Mora-Seró I, Bisquert J (2003) Fermi level of surface states in TiO2 nanoparticles. Nano Lett 3:945–949. doi:10.1021/nl0342390

    Article  CAS  Google Scholar 

  14. Cueto LF, Sánchez E, Torres-Martinez LM, Hirata GA (2005) On the optical, structural, and morphological properties of ZrO2 and TiO2 dip-coated thin films supported on glass substrates. Mater Charact 55:263–271. doi:10.1016/j.matchar.2005.05.004

    Article  CAS  Google Scholar 

  15. Dávila-Martínez RE, Cueto LF, Sánchez EM (2006) Electrochemical deposition of silver nanoparticles on TiO2/FTO thin films. Surf Sci 600:3427–3435. doi:10.1016/j.susc.2006.06.041

    Article  CAS  Google Scholar 

  16. Lyon LA, Hupp JT (1999) Energetics of the nanocrystalline titanium dioxide/aqueous solution interface: 2009 approximate conduction band edge variations between H0 = −10 and H = +26. J Phys Chem B 103:4623–4628. doi:10.1021/jp9908404

    Article  CAS  Google Scholar 

  17. Augustynski J (1983) Comments on the paper on the electrolytic reduction of carbon dioxide at TiO2 and other titanates by A.H.A. Tinnemans, T.P.M. Koster, D.H.M.W. Thewissen, C.W. De Kreuk and A. Mackor. J Electroanal Chem Interfacial Electrochem 145:457–460. doi:10.1016/S0022-0728(83)80100-4

    Article  CAS  Google Scholar 

  18. Sullivan BP, Krist K, Guard HE (1993) Electrochemical and electrocatalytic reactions of carbon dioxide. Elsevier Science, New York

    Google Scholar 

  19. Bisquert J, García-Belmonte G, Fabregat-Santiago F, Ferriols NS, Bogdanoff P, Pereira EC (2000) Doubling exponent models for the analysis of porous film electrodes by impedance relaxation of TiO2 nanoporous in aqueous solution. J Phys Chem B 104:2287–2298. doi:10.1021/jp993148h

    Article  CAS  Google Scholar 

  20. Gimenez S, Dunn HK, Rodenas P, Fabregat-Santiago F, Miralles SG, Barea EM, Trevisan R, Guerrero A, Bisquert J (2012) Carrier density and interfacial kinetics of mesoporous TiO2 in aqueous electrolyte determined by impedance spectroscopy. J Electroanal Chem 668:119–125. doi:10.1016/j.jelechem.2011.12.019

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors express their thanks to the projects SEP-CONACyT #151587 and SENER-CONACyT #150111 for their support to this work. In addition, the support of the Universidad Autónoma de Nuevo León, Monterrey, México, under PAICyT programs is recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo M. Sánchez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cueto-Gómez, L.F., Garcia-Gómez, N.A., Mosqueda, H.A. et al. Electrochemical study of TiO2 modified with silver nanoparticles upon CO2 reduction. J Appl Electrochem 44, 675–682 (2014). https://doi.org/10.1007/s10800-014-0677-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-014-0677-z

Keywords

Navigation