Skip to main content

Advertisement

Log in

Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

A redox flow cell utilizing the Fe2+/Fe3+ and H2/H+ couples is investigated as an energy storage device. A conventional polymer electrolyte fuel cell anode and membrane design is employed, with a cathode chamber containing a carbon felt flooded with aqueous acidic solution of iron salt. The maximum power densities achieved for iron sulfate, iron chloride, and iron nitrate are 148, 207, and 234 mW cm−2, respectively. It is found that the capacity of the iron nitrate solution decreases rapidly during cycling. Stable cycling is observed for more than 100 h with iron chloride and iron sulfate solutions. Both iron sulfate and iron chloride solutions display moderate discharge polarization and poor charge polarization; therefore, voltage efficiency decreases dramatically with increasing current density. A small self-discharge current occurs when catholyte is circulating through the cathode chamber. As a result, a current density above 100 mA cm−2 is required to achieve high Coulombic efficiency (>0.9).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Ponce de Leon C, Frıas-Ferrer A, Gonzalez-Garcia J, Szanto DA, Walsh FC (2006) J Power Sources 160:716–732

    Article  CAS  Google Scholar 

  2. Bartolozzi M (1989) J Power Sources 27:219–234

    Article  CAS  Google Scholar 

  3. Weber AZ, Mench MM, Meyers JP, Ross PN, Gostick JT, Liu Q (2011) J Appl Electrochem 41:1137–1164

    Article  CAS  Google Scholar 

  4. Skyllas-Kazacos M, Chakrabarti MH, Hajimolana SA, Mjalli FS, Saleem M (2011) J Electrohem Soc 158(8):R55–R79

    Article  CAS  Google Scholar 

  5. Viswanathan V, Crawford A, Stephenson D, Kim S, Wang W, Coffey G, Thomsen E, Graff G, Balducci P, Kintner-Meyer M, Sprenkle V (2012) J Power Sources 10.1016/j.jpowsour.2012.12.023

  6. Fatih K, Wilkinson DP, Moraw F, Ilicic A, Girard F (2008) Electrochem Solid State Lett 11(2):B11–B15

    Article  CAS  Google Scholar 

  7. Yeager JF, Bennett RJ, Allenson DR (1962) Proceedings of the Annual Power Sources Conference, U.S. Army Signal Research and Development Laboratory, PSC Publications Committee 16:39

  8. Karamanev D, (2009) US patent 7572546B2

  9. Park KW, Han SB, Lee YW, Ko AR (2012) Korean patent application 10-1103847

  10. Hruska LW, Savinell RF (1981) J Electrochem Soc 128:18–25

    Article  CAS  Google Scholar 

  11. Wei X, Li L, Luo Q, Nie Z, Wang W, Li B, Xia GG, Miller E, Chambers J, Yang G (2012) J Power Sources 218:39–45

    Article  CAS  Google Scholar 

  12. Li B, Li L, Wang W, Nie Z, Chen B, Wei X, Luo Q, Yang Z, Sprenkle S (2013) J Power Sources 229:1–5

    Article  CAS  Google Scholar 

  13. Lopez-Atalaya M, Codina G, Perez JR, Vazquez JL, Aldaz A (1992) J Power Sources 39:147–154

    Article  CAS  Google Scholar 

  14. Wen YH, Zhang HM, Qian P, Zhou HT, Zhao P, Yi BL, Yang YS (2006) J Electrohem Soc 153(5):A929–A934

    Article  CAS  Google Scholar 

  15. Cho KT, Ridgway P, Weber AZ, Haussener S, Battaglia V, Srinivasan V (2012) J Electrochem Soc 159(11):A1806–A1815

    Article  CAS  Google Scholar 

  16. Cooper KR (2010) J Electrochem Soc 157(11):B1731–B1739

    Article  CAS  Google Scholar 

  17. Kusoglu A, Cho KT, Prato RA, Weber AZ (2013) Solid State Ionics, submitted

  18. Weber AZ, Delacourt C (2008) Fuel Cells 8(6):459–465

    Article  CAS  Google Scholar 

  19. Pupkevich V, Glibin V, Karamanev D (2007) J Solid State Electrochem 11:1429–1434

    Article  CAS  Google Scholar 

  20. Altmann S, Kaz T, Friedrich KA (2011) Electrochim Acta 56:4287–4293

    Article  CAS  Google Scholar 

  21. Hwang CM, Ishida M, Ito H, Maeda T, Nakano A, Hasegawa Y, Yokoi N, Kato A, Yoshida T (2011) Int J Hydrogen Energy 36:1740–1753

    Article  CAS  Google Scholar 

  22. Codina G, Perez JR, Lopez-Atalaya M, Vazquez JL, Aldaz A (1994) J Power Sources 48:293–302

    Article  CAS  Google Scholar 

  23. Giner J, Swette L, Cahill K (1976) NASA Contract NAS3-19760, NASA CR-134705

  24. Dhooge PM, Stilwell DE, Park S-M (1982) J Electrohem Soc 129(8):1719–1724

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Stanislaus Grosjean contributed to the design and fabrication of the experimental setup for this study. The authors thank Kyu Taek Cho for helpful discussion and guidance during the initiation of this study. We also thank John Kerr and Vincent S. Battaglia for fruitful discussion. This study was supported in part by the Assistant Secretary for Energy Efficiency and Renewable Energy, Fuel Cell Technologies Office, of the U.S. Department of Energy under contract number DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael C. Tucker.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tucker, M.C., Srinivasan, V., Ross, P.N. et al. Performance and cycling of the iron-ion/hydrogen redox flow cell with various catholyte salts. J Appl Electrochem 43, 637–644 (2013). https://doi.org/10.1007/s10800-013-0553-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-013-0553-2

Keywords

Navigation