Skip to main content
Log in

Impedance spectroscopic determination of effect of temperature on the transport resistances of an electro-electrodialysis cell used for concentration of hydriodic acid

  • Original Paper
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Effect of temperature on different transport resistances of an electro-electrodialysis (EED) cell used for concentration of hydriodic acid (HI) was found by equivalent circuit modeling of the measured impedance response of the cell. The EED cell consisted of two compartments separated by Nafion 117 membrane and each compartment had a platinum electrode. Both the compartments were filled with aqueous solution of 55 wt% HI containing 0.5 M iodine. Impedance measurements were carried out at four different temperatures in the range of 308–353 K. Equivalent circuit for the cell consisted of a resistor for ohmic resistance of the cell, a Warburg element for the resistance due to diffusion boundary layer and a constant phase element for the resistance to transport of ions due to non-electro neutral heterogeneous transport layer at the membrane. Effect of temperature on impedance due to heterogeneous transport was lower than the Warburg impedance and the solution and membrane resistance. Effective capacitance of the heterogeneous transport layer was found to reduce with temperature. The dynamics of the heterogeneous transport layer along with the diffusional boundary layer were found to reduce with increase in the cell operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Züttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a future energy carrier. Wiley, Weinheim

    Book  Google Scholar 

  2. Jones LW (1970) Towards a liquid hydrogen fuel economy, University of Michigan engineering technical report UMR2320

  3. Moriarty L, Honnery D (2007) Intermittent renewable energy: the only future source of hydrogen? Int J Hydrogen Energ 32:1616–1624

    Article  CAS  Google Scholar 

  4. Hirsch D, Steinfeld A (2004) Radiative transfer in a solar chemical reactor for the co-production of hydrogen and carbon by thermal decomposition of methane. Chem Eng Sci 59:5771–5778

    Article  CAS  Google Scholar 

  5. Sverdrup JTG, Mann MK, Maness P-C, Kroposki B, Ghirardi M, Evans RJ, Blake D (2008) Renewable hydrogen production. Int J Energy Res 32:379–407

    Article  Google Scholar 

  6. Dincer I, Tolga Balta M (2011) Potential thermochemical and hybrid cycles for nuclear-based hydrogen production. Int J Energy Res 35:123–137

    Article  CAS  Google Scholar 

  7. Lewis MA, Masina JG, O’Hare PA (2009) Evaluation of alternative thermochemical cycles, Part I: the methodology. Int J Hydrogen Energ 34:4115–4124

    Article  CAS  Google Scholar 

  8. Brown LC, Besenbruch GE, Lentsch RD, Schultz KR, Funk JF, Pickard PS, Marshall AC, Showalter SK (2003) High efficiency generation of hydrogen fuels using nuclear power. GA–A24285 (2003)

  9. Norman JH, Besenbruch GE, O’Keefe DR (1981) Thermochemical water-splitting cycle for hydrogen production. GA-A 16713 (1981)

  10. Giaconia A, Caputo G, Ceroli A, Diamanti M, Barbarossa V, Tarquini P, Sau S (2007) Experimental study of two phase separation in the Bunsen section of the sulfur–iodine thermochemical cycle. Int J Hydrogen Energ 32:531–536

    Article  CAS  Google Scholar 

  11. Kasahara S, Kubo S, Onuki K, Nombra M (2004) Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process. Int J Hydrogen Energ 29:579–587

    Article  CAS  Google Scholar 

  12. Nomura M, Okuda H, Kasahara S, Nakao S-I (2005) Optimization of the process parameters of an electrochemical cell in the IS process. Chem Eng Sci 60:7160–7167

    Article  CAS  Google Scholar 

  13. Hong S-D, Kim J-K, Bae K-K, Lee S-H, Choi H-S, Hwang G-J (2007) Evaluation of the membrane properties with changing iodine molar ratio in HIx (HI–I2–H2O mixture) solution to concentrate HI by electro-electrodialysis. J Membr Sci 291:106–110

    Article  CAS  Google Scholar 

  14. Guo H, Kasahara S, Onuki K, Zhang P, Xu J (2011) Simulation study on the distillation of hyper-pseud azeotropic HI–I2–H2O mixture. Ind Eng Chem Res 50:11644–11656

    Article  CAS  Google Scholar 

  15. Onuki K, Hwang G-J, Shimizu S (2000) Electrodialysis of hydriodic acid in the presence of iodine. J Membr Sci 175:171–179

    Article  CAS  Google Scholar 

  16. Onuki K, Hwang G-J, Shimizu Arifal S (2001) Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature. J Membr Sci 192:193–199

    Article  CAS  Google Scholar 

  17. Yoshida M, Tanaka N, Okuda H, Onuki K (2008) Concentration of HIx solution by electro-electrodialysis using Nafion 117 for thermochemical water-splitting IS process. Int J Hydrogen Energ 33:6913–6920

    Article  CAS  Google Scholar 

  18. Sow PK, Shukla A (2012) Effect of asymmetric variation of operating parameters on EED cell for HI concentration in I-S cycle for hydrogen production. Int J Hydrogen Energ 37:13958–13970

    Article  CAS  Google Scholar 

  19. Sow PK, Shukla A (2012) Electro-electrodialysis for concentration of hydriodic acid. Int J Hydrogen Energ 37:3931–3937

    Article  CAS  Google Scholar 

  20. Hong S-D, Kim C-H, Kim J-G, Lee S-H, Bae K-K, Hwang G-J (2006) HI concentration from HIx (HI–H2O–I2) solution for the thermochemical water-splitting IS process by electro- electrodialysis. J Ind Eng Chem 12:566–570

    CAS  Google Scholar 

  21. Park JS, Choi JH, Woo JJ, Moon SH (2006) An electrical impedance spectroscopic (EIS) study on transport characteristics of ion-exchange membrane systems. J Colloid Interface Sci 300:655–662

    Article  CAS  Google Scholar 

  22. Park J-S, Choi JH, Yeon KH, Moon SH (2006) An approach to fouling characterization of an ion-exchange membrane using current–voltage relation and electrical impedance spectroscopy. J Colloid Interface Sci 294:129–138

    Article  CAS  Google Scholar 

  23. Gomadam PM, Weidner JW (2005) Analysis of electrochemical impedance spectroscopy in proton exchange membrane fuel cells. Int J Energy Res 29:1133–1151

    Article  CAS  Google Scholar 

  24. Chilcott TC, Chan M, Gaedt L, Nantawisarakul T, Fane AG, Coster HGL (2002) Electrical impedance spectroscopy characterization of conducting membranes: I Theory. J Membr Sci 195:153–167

    Article  CAS  Google Scholar 

  25. Długołecki P, Ogonowski P, Metz SJ, Saakes M, Nijmeijer K, Wessling M (2010) On the resistances of membrane, diffusion boundary layer and double layer in ion exchange membrane transport. J Membr Sci 349:369–379

    Article  Google Scholar 

  26. Sow PK, Sant S, Shukla A (2010) EIS studies on electro-electrodialysis cell for concentration of hydriodic acid. Int J Hydrogen Energ 35:8868–8887

    Article  CAS  Google Scholar 

  27. Moya AA (2012) Electric circuits modeling the low-frequency impedance of ideal ion-exchange membrane systems. Electrochim Acta 62:296–304

    Article  CAS  Google Scholar 

  28. Moya AA (2011) Influence of dc electric current on the electrochemical impedance of ion-exchange membrane systems. Electrochim Acta 56:3015–3022

    Article  CAS  Google Scholar 

  29. Moya AA (2010) Study of the electrochemical impedance and the linearity of the current–voltage relationship in inhomogeneous ion-exchange membranes. Electrochim Acta 55:2087–2092

    Article  CAS  Google Scholar 

  30. Nikonenko VV, Kozmai AE (2011) Electrical equivalent circuit of an ion-exchange membrane system. Electrochim Acta 56:1262–1269

    Article  CAS  Google Scholar 

  31. Sistat P, Kozmaib A, Pismenskayab N, Larchet C, Pourcellya G, Nikonenkob V (2008) Low-frequency impedance of an ion-exchange membrane system. Electrochim Acta 53:6380–6390

    Article  CAS  Google Scholar 

  32. Bard AJ, Faulkner LR (2004) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, Weinheim

    Google Scholar 

  33. Orazem ME, Tribollet B (2008) Electrochemical impedance spectroscopy, 1st edn. Wiley, New Jersey

    Book  Google Scholar 

  34. Boukamp BA (1995) A linear Kronig–Kramers transform test for immittance data validation. J Electrochem Soc 142:1885

    Article  CAS  Google Scholar 

  35. http://www.gamry.com/

  36. Sang S, Wu Q, Huang K (2008) A discussion on ion conductivity at cation exchange membrane/solution interface. Colloids Surfaces A: Physiochem Eng Aspects 315:98–102

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors (PKS, ANB, and AS) acknowledge the financial support from ONGC Energy Centre for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupam Shukla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sow, P.K., Parvatalu, D., Bhardwaj, A. et al. Impedance spectroscopic determination of effect of temperature on the transport resistances of an electro-electrodialysis cell used for concentration of hydriodic acid. J Appl Electrochem 43, 31–41 (2013). https://doi.org/10.1007/s10800-012-0500-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-012-0500-7

Keywords

Navigation