Skip to main content
Log in

Electrochemical characterization of perovskite-based SOFC cathodes

  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

The electrochemical performance of La0.58Sr0.4Co0.2Fe0.8O3-δ (L58SCF), La0.78Sr0.2Co0.2Fe0.8O3-δ (L78SCF) and composite La0.65Sr0.3MnO3-δ – 8 mol% Y2O3 stabilized ZrO2 (LSM-YSZ, 50:50 wt%) cathode electrodes interfaced to a double-layer electrolyte made of Ce0.8Gd0.2O2-δ (CGO) and YSZ was studied in the temperature range 600–850 °C using impedance spectroscopy and current-overpotential measurements. The experiments were carried out in a single chamber cell using a three electrode set-up with porous Pt films as auxiliary electrodes. The perovskite powders were synthesized using the spray-drying technique starting from nitrate precursors and were deposited on the solid electrolyte via screen-printing. Open circuit impedance measurements on as-prepared electrodes, i.e. before any polarization, and micropolarization measurements have shown that the L78SCF/CGO/YSZ electrode exhibits the lowest area specific polarization resistance R F (R F was approximately equal to 0.4 Ω cm2 at 800 °C and \(P_{\rm O_2}\) = 21 kPa) or, equivalently, the highest electrocatalytic activity according to the order: LSM/LSM-YSZ/CGO/YSZ<L58SCF/CGO/YSZ<L78SCF/CGO/YSZ. Current-overpotential data taken over an extended cathodic overpotential (ohmic-drop-free) range (0 to −500 mV) also indicated the aforementioned order of electrocatalytic activity. The Nyquist plots corresponded to at least two overlapping arcs or, equivalently, to at least two rate limiting processes. The relative contribution and degree of overlap of these arcs depended on electrode material, temperature and oxygen partial pressure, the low frequency arc being in general dominant at low temperatures and low oxygen partial pressures. Open circuit impedance experiments carried out at different oxygen partial pressures \(P_{\rm O_2}\) (0.01–100 kPa) revealed an exponential increase of the open-circuit area specific polarization conductance \(R_{\rm F}^{-1}\) with increasing \(P_{\rm O_2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

References

  1. Jørgensen M.J., Mogensen M. (2001). J. Electrochem. Soc. 148:A433

    Article  Google Scholar 

  2. Kenjo T., Nishiya M. (1992). Solid State Ionics 57:295

    Article  CAS  Google Scholar 

  3. Dusastre V., Kilner J.A. (1999). Solid State Ionics 126:163

    Article  CAS  Google Scholar 

  4. Simner S.P., Bonnett J.F., Canfield N.L., Meinhardt K.D., Sprenkle V.L., Stevenson J.W. (2002). Electrochem. Solid State Lett. 5:A173

    Article  CAS  Google Scholar 

  5. Mai A., Haanappel V.A.C., Uhlenbruck S., Tietz F., Stöver D. (2005). Solid State Ionics 176:1341

    Article  CAS  Google Scholar 

  6. Teraoka Y., Zhang H.M., Okamoto K., Yamazoe N. (1988). Mater. Res. Bull. 23:51

    Article  CAS  Google Scholar 

  7. Stevenson J.W., Armstrong T.R., Carneim R.D., Pederson L.R., Weber W.J. (1996). J. Electrochem. Soc. 143:2722

    Article  CAS  Google Scholar 

  8. Fleig J. (2002). J. Power Sources 105:228

    Article  CAS  Google Scholar 

  9. Adler S.B., Lane J.A., Steele B.C.H. (1996). J. Electrochem. Soc. 143:3554

    Article  CAS  Google Scholar 

  10. Kilner J.A., De Souza R.A., Fullarton I.C. (1996). Solid State Ionics 86–88:703

    Article  Google Scholar 

  11. Co A.C., Xia S.J., Birss V.I. (2005). J. Electrochem. Soc. 152:A570

    Article  CAS  Google Scholar 

  12. Barbucci A., Bozzo R., Cerisola G., Costamagna P. (2002). Electrochim. Acta 47:2183

    Article  CAS  Google Scholar 

  13. Wang S., Jiang Y., Zhang Y., Yan J., Li W. (1998). Solid State Ionics 113–115:291

    Article  Google Scholar 

  14. Barbucci A., Carpanese P., Gerisola G., Viviani M. (2005). Solid State Ionics 176:1753

    Article  CAS  Google Scholar 

  15. Kim J.-D., Kim G.-D., Moon J.-W., Park Y.-I., Lee H.-W., Kobayashi K., Nagai M., Kim C.-E. (2001). Solid State Ionics 143:379

    Article  CAS  Google Scholar 

  16. Perry Murray E., Tsai T., Barnett S.A. (1998). Solid State Ionics 110:235

    Article  Google Scholar 

  17. de Florio D.Z., Muccillo R., Esposito V., Di Bartolomeo E., Traversa E. (2005). J. Electrochem. Soc. 152:A88

    Article  Google Scholar 

  18. Perry Murray E., Sever M.J., Barnett S.A. (2002). Solid State Ionics 148:27

    Article  CAS  Google Scholar 

  19. Tu H.Y., Takeda Y., Imanishi N., Yamamoto O. (1999). Solid State Ionics 117:277

    Article  CAS  Google Scholar 

  20. Esquirol A., Brandon N.P., Kilner J.A., Mogensen M. (2004). J. Electrochem. Soc. 151:A1847

    Article  CAS  Google Scholar 

  21. Grunbaum N., Dessemond L., Fouletier J., Prado F., Caneiro A. (2006). Solid State Ionics 177:907

    Article  CAS  Google Scholar 

  22. Tsoga A., Gupta A., Naoumidis A., Nikolopoulos P. (2000). Acta Mater. 48:4709

    Article  CAS  Google Scholar 

  23. Kountouros P., Förthmann R., Naoumidis A., Stochniol G., Syskakis E. (1995). Ionics 1:40

    Article  CAS  Google Scholar 

  24. A. Mai, PhD Thesis, Ruhr-Univ. Bochum, Schriften des Forschungszentrum Jülich, Energietechnik, Vol. 31 (2004).

  25. Technical Note 101: Potential Error Correction (iR Compensation), Princeton Applied Research (PAR) (Oak Ridge, TN, 1986).

  26. Waller D., Lane J.A., Kilner J.A., Steele B.C.H. (1996). Solid State Ionics 86–88:767

    Article  Google Scholar 

  27. Coffey G.W., Pederson L.R., Rieke P.C. (2003). J. Electrochem. Soc. 150:A1139

    Article  CAS  Google Scholar 

  28. Fleig J. (2005). Phys. Chem. Chem. Phys. 7:2027

    Article  CAS  Google Scholar 

  29. Fleig J., Maier J. (2004). J. European Ceramic Soc. 24:1343

    Article  CAS  Google Scholar 

  30. Ullmann H., Trofimenko N., Tietz F., Stöver D., Ahmad-Khanlou A. (2000). Solid State Ionics 138:79

    Article  CAS  Google Scholar 

  31. Mai A., Tietz F., Stöver D. (2004). Solid State Ionics 173:35

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support by the Greek-German bilateral scientific-technical collaboration programme (GRC 01/99), the “C. Caratheodory” Programme (Research Committee, Univ. of Patras) and the Integrated Project “Real-SOFC” (Project No: SES6-CT-2003-502612). They also thank Dr V. Drakopoulos, Institute of Chemical Engineering and High Temperature Chemical Processes (ICE-HT/FORTH) for the scanning electron microscopy characterization of the electrodes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Bebelis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bebelis, S., Kotsionopoulos, N., Mai, A. et al. Electrochemical characterization of perovskite-based SOFC cathodes. J Appl Electrochem 37, 15–20 (2007). https://doi.org/10.1007/s10800-006-9215-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-006-9215-y

Keywords

Navigation