Skip to main content

Advertisement

Log in

A new approach for image databases design

  • Published:
Information Technology and Management Aims and scope Submit manuscript

Abstract

This paper focuses on the methodologies to organize and structure image databases. Conventional relational database techniques are optimized to deal with textual and numeric data; however, they are not effective to handle image data. Some progresses have been made in developing new approaches to establish and use image databases, but the applications of these approaches are very labor-intensive, error-prone, and impractical to large-scale databases. In this paper, we propose a new approach to develop the structure of a large-scale image automatically. It is an integrated approach from existing technologies for the new application where the management of image data is focused. In addition, we present a solution to data indexing for the image database with different image types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bi ZM, Lang SYT (2007) A framework for CAD- and sensor-based robotic coating automation. IEEE Trans Ind Inform 3(1):84–91

    Article  Google Scholar 

  2. Bi ZM (2010) Computer integrated reconfigurable experimental platform for ergonomic study of vehicle body design. Int J Comput Integr Manuf 23(11):968–978

    Article  Google Scholar 

  3. Bi ZM, Wang L (2010) Advances in 3D data acquisition and processing for industrial applications. Robot Comput-Integr Manuf 26:403–413

    Article  Google Scholar 

  4. Bi ZM, Xu LD, Wang C (2014) Internet of things for enterprise systems of modern manufacturing. IEEE Trans Ind Inform 10(2):1537–1546

    Article  Google Scholar 

  5. Bi ZM, Cochran D (2014) Big data analytics with applications. J Manag Anal 1(4):249–265

    Google Scholar 

  6. Carson C, Ogle VE (1996) Storage and retrieval of feature data for a very large online image collection. IEEE Comput Soc Bull Tech Comm Data Eng, http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.48.821

  7. Chaturvedi N, Agarwal S, Johari PK (2014) A novel approach of color-texture based cbir using fuzzy logic. Int J Database Theory Appl 7(4):79–86

    Article  Google Scholar 

  8. Chen HJ, Rasmussen EM (1999) Intellectual access to images. Libr Trends 48(2):291–302

    Google Scholar 

  9. Chen T, Tan P, Ma L-Q, Cheng M-M, Shamir A, Hu S-M (2013) PoseShpe: human image database construction and personalized content synthesis. IEEE Trans Vis Comput Graph 19(5):824–837

    Article  Google Scholar 

  10. Chen Z, Xu L (2001) An object-oriented intelligent CAD system for ceramic kiln. Knowl-Based Syst 14:263–270

    Article  Google Scholar 

  11. Cormen TH, Leiserson CE, Rivest RL, Stein C (1990) Introduction to Algorithm. MIT Press, Cambridge

    Google Scholar 

  12. Couprie NM, Bertrand G (2005) Watersheds, mosaics, and the emergence paradigm. Discrete Appl Math 147(2–3):301–324

    Google Scholar 

  13. Ding H, Pan W, Guan Y (2009) Image acquisition, storage and retrieval, image processing. Yung-Sheng Chen (ed) ISBN: 978-953-307-026-1, InTechOpen. doi: 10.5772/7042. http://www.intechopen.com/books/image-processing/image-acquisition-storage-and-retrieval

  14. Dubey SR, Singh SK, Singh RK (2015) Local diagonal extrema pattern: a new and efficient feature descriptor for CT image retrieval. IEEE Sig Process Lett 22(9):1215–1219

    Article  Google Scholar 

  15. Florack L, Kuijper A (2000) The topological structure of scale-space images. J Math Imaging Vis 12(1):65–79

    Article  Google Scholar 

  16. Forsyth DA (2002) Benchmarks for storage and retrieval in multimedia databases. Proc SPIE 4676, storage and retrieval for media databases, p 240

  17. Gisolf F, Barens P, Snel E, Malgnoezar A, Vos M, Mieremet A, Geraldts Z (2014) Common source identification of images in large databases. Forensic Sci Int 244:222–230

    Article  Google Scholar 

  18. Hartwig E (2013) 5 heartwarming stories that prove dog is man’s best friend [Photograph]. http://mashable.com/2013/03/12/dog-mans-best-friend/

  19. Horster E, Lienhart R, Slaney M (2007) Image retrieval on large-scale image databases. CIVR ‘07 Proceedings of the 6th ACM international conference on Image and video retrieval, P 17–24

  20. Jiang L, Li L, Cai H, Liu H, Hu J, Xie C (2014) A linked data-based approach for clinical treatment selecting support. J Manag Anal 1(4):301–316

    Google Scholar 

  21. Joshi MD, Deshmukh RM, Hemke KN, Bhake A, Wajgi R (2014). Image retrieval and re-ranking techniques—a survey. Sig Image Process Int J (SIPIJ) 5(2)

  22. Ko BC, Lee JH, Nam J-Y (2012) Automated medical image annotation and keyword-base image retrieval using relevant feedback. J Digit Imaging 25:454–465

    Article  Google Scholar 

  23. Kumar A, Kim J, Cai W, Fulham M, Feng D (2013) Content-based medical image retrieval: a survey of applications to multidimensional and multimodality data. J Digit Imaging 26:1025–1029

    Article  Google Scholar 

  24. Lai H, Visani M, Boucher A, Ogier J (2014) A new interactive semi-supervised clustering model for large image database indexing. Pattern Recognit Lett 37:94–106

    Article  Google Scholar 

  25. Lew M, Sebe N, Njarara C (2006) Content-based multimedia information retrieval: state of the art and challenges. ACM Trans Multimed Comput Commun Appl 2:1–19

    Article  Google Scholar 

  26. Lebrun J, Gosselin PH, Philipp-Foliguet S (2011) Inexact graph matching based on kernels for object retrieval in image databases. Image Vis Comput 29:716–729

    Article  Google Scholar 

  27. Li T, Feng S, Li L (2001) Information visualization for intelligent decision support systems. Knowl-Based Syst 14(5–6):259–262

    Article  Google Scholar 

  28. Lin H, Wang W, Luo J, Yang X (2014) Development of personalized training system using lung image database consortium and image database recourse initiative database. Acad Radiol 21(12):1614–1622

    Article  Google Scholar 

  29. Lu T, Liang P, Wu W-B, Xue J, Lei C-L, Li Y-Y, Sun Y-N, Liu F-Y (2012) Integration of the image-guided surgery toolkit (IGSTK) into the medical imaging interaction toolkit. J Digit Imaging 25:729–737

    Article  Google Scholar 

  30. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. Proc. of imaging understanding workshop, pp 121–130

  31. Ma Z, Nie F, Yang Y, Uijlings JRR, Sebe N (2012) Web image annotation via subspace-sparsity collaborated feature selection. IEEE Trans Multimed 14(4):1021–1030

    Article  Google Scholar 

  32. Marwaha P, Marwaha P, Sachdeva S (2009) Content based image retrieval in multimedia databases. Int J Recent Trends Eng 1(2):210–213

    Google Scholar 

  33. Mogharrebi M, Ang MC, Prabuwono AS, Aghamohammadi A, Ng KW (2013) Retrieval system for patent image. Proced Technol 11:912–918

    Article  Google Scholar 

  34. Murala S, Maheshwari RP, Bakasybramanian (2012) Local tetra patterns: a new feature descriptor for context-based image retrieval. IEEE Trans Image Process 21(5):2874–2886

    Article  Google Scholar 

  35. Murthy VS, Vamsidhar E, Swarup Kumar JNVR, Sankara Rao P (2010) Content based image retrieval using hierarchical and kmeans clustering techniques. Int J Eng Sci Technol 2(3):209–212

    Google Scholar 

  36. Navathe RE, Shamkant B (2010) Fundamentals of database systems, (6th ed). Upper Saddle River, N.J.: Pearson Education. pp 652–660

  37. Obeid M, Jedynak B, Daoudi M (2001) Image indexing & retrieval using intermediate features, MULTIMEDIA ‘01 Proceedings of the ninth ACM international conference on multimedia, p 531–533

  38. Oberoi A, Singh M (2012) Content based image retrieval system for medical databases (CBIR-MD) lucrative tested on endoscopy, dental and skull images. IJCSI Int J Comput Sci Issues 9(1):300–306

    Google Scholar 

  39. Pham DL, Xu C, Prince JL (2000) Current methods in medical image segmentation. Annu Rev Biomed Eng 2:315–337

    Article  Google Scholar 

  40. Ponomarenko N, Jin L, Ieremeev O, Lukin V, Egiazarian K, Astola J, Vozel B, Chendi K, Carli M, Battisti F, Jay Kuo CC (2015) Image database T1D2013: peculiarities, results and perspectives. Sig Process Image Commun 30:57–77

    Article  Google Scholar 

  41. Rui Y, Huang TS, Chang S-F (1999) Image retrieval: current techniques, promising directions and open issues. J Vis Commun Image Represent 10(1):39–62

    Article  Google Scholar 

  42. Stathopoulos S, Kakamboukis T (2015) Applying latent semantic analysis to large-scale medical image databases. Comput Med Imaging Graph 39:27–34

    Article  Google Scholar 

  43. Wang C, Bi ZM, Xu LD (2014) IoT and cloud computing in automation of assembly modeling systems. IEEE Trans Ind Inform 10(2):1426–1434

    Article  Google Scholar 

  44. Wang X (2014) Design and implementation of cneost image database based on nosql system. Chin Astron Astrophys 38:211–221

    Article  Google Scholar 

  45. Wu Z, Leahy R (1993) An optimal graph theoretic approach to data clustering: theory and its application to image segmentation. IEEE Trans Pattern Anal Mach Intell 15(11):1101–1113

    Article  Google Scholar 

  46. Xie H, Zhang Y, Tan J, Guo L, Li J (2014) Contextual query expansion for image retrieval. IEEE Trans Multimed 16(4):1104–1114

    Article  Google Scholar 

  47. Xu L (2011) Enterprise systems: state-of-the-art and future trends. IEEE Trans Ind Inform 7(4):630–640

    Article  Google Scholar 

  48. Xu L (2014) Engineering informatics: state of the art and future trends. Front Eng Manag 1(3):270–282

    Article  Google Scholar 

  49. Xu L (2015) Enterprise integration and information architectures. CRC Press, ISBN: 978-1-4398-5024-4

  50. Xu L, Li Z, Li S, Tang F (2005) A polychromatic sets approach to the conceptual design of machine tools. Int J Prod Res 43(12):2397–2422

    Article  Google Scholar 

  51. Xu L, Li Z, Li S, Tang F (2007) A decision support system for product design in concurrent engineering. Decis Support Syst 42(4):2029–2042

    Article  Google Scholar 

  52. Xu L, He W, Li S (2014) Internet of things in industries: a survey. IEEE Trans Ind Inform 10(4):2233–2248

    Article  Google Scholar 

  53. Xu L, Wang C, Bi Z, Yu J (2014) Object-oriented templates for automated assembly planning of complex products. IEEE Trans Autom Sci Eng 11(2):492–503

    Article  Google Scholar 

  54. Yu J, Xu L, Bi Z, Wang C (2014) Extended interference matrices for exploded view of assembly planning. IEEE Trans Autom Sci Eng 11(1):279–286

    Article  Google Scholar 

  55. Zare MR, Mueen Z, Seng WC (2014) Automatic medical X-ray image classification using annotation. J Digit Imaging 27:77–89

    Article  Google Scholar 

  56. Zhao R, Grosky WI (2002) Bridging the semantic gap in image retrieval. Distrib Multimed Databases: Tech Appl Ideal Group Publ. doi:10.4018/978-1-930708-29-7.ch002

    Google Scholar 

  57. Zhou S, Li H, Xu L (2003) A variational approach to intensity approximation for remote sensing images using dynamic neural networks. Expert Syst 20(4):163–170

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the Springer Journal Editorial office, senior editor and the anonymous reviewers for constructive feedback. Also, we would like to thanks Dr. Bulyshev for his valuable recommendations on image processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Bulysheva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulysheva, L., Jones, J. & Bi, Z. A new approach for image databases design. Inf Technol Manag 18, 97–105 (2017). https://doi.org/10.1007/s10799-015-0224-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10799-015-0224-6

Keywords

Navigation