Skip to main content

Advertisement

Log in

Assessing posterior ocular structures in β-thalassemia minor

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to investigate the effect of β-thalassemia minor on choroidal, macular, and peripapillary retinal nerve fiber layer thickness.

Methods

To form the sample, we recruited 40 patients with β-thalassemia minor and 44 healthy participants. We used spectral-domain optical coherence tomography to take all measurements of ocular thickness, as well as measured intraocular pressure, axial length, and central corneal thickness. We later analyzed correlations of hemoglobin levels with ocular parameters.

Results

A statistically significant difference emerged between patients with β-thalassemia minor and the healthy controls in terms of mean values of subfoveal, nasal, and temporal choroidal thickness (p = 0.001, p = 0.016, and p = 0.010, respectively). Except for central macular thickness, differences in paracentral macular thicknesses between the groups were also significant (superior: p < 0.001, inferior: p = 0.007, temporal: p = 0.001, and nasal: p = 0.005). Also, no statistically significant differences were noted for retinal nerve fiber layer thickness between two groups.

Conclusion

Mean values of subfoveal, nasal, temporal choroidal, and macular thickness for the four quadrants were significantly lower in patients with β-thalassemia minor than in healthy controls.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Rathod DA, Kaur A, Patel V et al (2007) Usefulness of cell counter-based parameters and formulas in detection of β-thalassemia trait in areas of high prevalence. Am J Clin Pathol 128:585–589

    Article  PubMed  Google Scholar 

  2. Urrechaga E, Borque L, Escanero JF (2011) The role of automated measurement of RBC subpopulations in differential diagnosis of microcytic anemia and β-thalassemia screening. Am J Clin Pathol 135:374–379

    Article  PubMed  Google Scholar 

  3. Bhoiwala DL, Dunaief JL (2016) Retinal abnormalities in β-thalassemia major. Surv Ophthalmol 61(1):33–50

    Article  PubMed  Google Scholar 

  4. Kinsella FP, Mooney DJ (1988) Angioid streaks in beta thalassaemia minor. Br J Ophthalmol 72:303–304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ryan SJ (2006) Retina, 4th edn. Elsevier Mosby, Philadelphia, pp 33–34

    Google Scholar 

  6. Spaide RF, Koizumi H, Pozzoni MC (2008) Enhanced depth imaging spectral-domain optical coherence tomography. Am J Ophthalmol 146:496–500

    Article  PubMed  Google Scholar 

  7. Mathew R, Bafiq R, Ramu J et al (2015) Spectral domain optical coherence tomography in patients with sickle cell disease. Br J Ophthalmol 99:967–972

    Article  PubMed  Google Scholar 

  8. El-Shazly AA, Elkitkat RS, Ebeid WM, Deghedy MR (2016) Correlation between subfoveal choroidal thickness and foveal thickness in thalassemic patients. Retina 36(9):1767–1772

    Article  CAS  PubMed  Google Scholar 

  9. Pekel G, Doğu MH, Keskin A et al (2015) Subfoveal choroidal thickness is associated with blood hematocrit level. Ophthalmologica 234(1):55–59

    Article  PubMed  Google Scholar 

  10. Yumusak E, Ciftci A, Yalcin S, Sayan CD, Dikel NH, Ornek K (2015) Changes in the choroidal thickness in reproductive-aged women with iron-deficiency anemia. BMC Ophthalmol 29(15):186

    Article  Google Scholar 

  11. Taher A, Vichinsky E, Musallam K et al (2013) Guidelines for the management of non transfusion dependent thalassaemia (NTDT). Thalassaemia International Federation, Nicosia

    Google Scholar 

  12. Read SA, Collins MJ, Vincent SJ, Alonso-Caneiro D (2013) Choroidal thickness in myopic and nonmyopic children assessed with enhanced depth imaging optical coherence tomography. Invest Ophthalmol Vis Sci 54:7578–7586

    Article  PubMed  Google Scholar 

  13. Regatieri CV, Branchini L, Carmody J, Fujimoto JG, Duker JS (2012) Choroidal thickness in patients with diabetic retinopathy analyzed by spectral-domain optical coherence tomography. Retina 32:563–568

    Article  PubMed Central  PubMed  Google Scholar 

  14. Spaide RF (2009) Age-related choroidal atrophy. Am J Ophthalmol 147:801–810

    Article  PubMed  Google Scholar 

  15. Lehmann M, Wolff B, Vasseur V, Martinet V, Manasseh N, Sahel JA, Mauget-Faÿsse M (2013) Retinal and choroidal changes observed with ‘En face’ enhanced-depth imaging OCT in central serous chorioretinopathy. Br J Ophthalmol 97:1181–1186

    Article  PubMed  Google Scholar 

  16. Xu J, Xu L, Du KF et al (2013) Subfoveal choroidal thickness in diabetes and diabetic retinopathy. Ophthalmology 120:2023–2028

    Article  PubMed  Google Scholar 

  17. Akay F, Gundogan FC, Yolcu U, Toyran S, Uzun S (2016) Choroidal thickness in systemic arterial hypertension. Eur J Ophthalmol 26(2):152–157

    Article  PubMed  Google Scholar 

  18. Kim M, Kim H, Kwon HJ, Kim SS, Koh HJ, Lee SC (2013) Choroidal thickness in Behcet’s uveitis: an enhanced depth imaging-optical coherence tomography and its association with angiographic changes. Invest Ophthalmol Vis Sci 54:6033–6039

    Article  PubMed  Google Scholar 

  19. Yang HS, Joe SG, Kim JG, Park SH, Ko HS (2013) Delayed choroidal and retinal blood flow in polycythaemia vera patients with transient ocular blindness: a preliminary study with fluorescein angiography. Br J Haematol 161:745–747

    Article  PubMed  Google Scholar 

  20. Silverberg Donald S, Wexler Dov, Schwartz Doron (2015) Is correction of iron deficiency a new addition to the treatment of the heart failure? Int J Mol Sci 16:14056–14074

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Aksoy A, Aslan L, Aslankurt M et al (2014) Retinal fiber layer thickness in children with thalassemia major and iron deficiency anemia. Semin Ophthalmol 29:22–26

    Article  PubMed  Google Scholar 

  22. Akdogan E, Turkyilmaz K, Ayaz T, Tufekci D (2015) Peripapillary retinal nerve fibre layer thickness in women with iron deficiency anaemia. J Int Med Res 43:104–109

    Article  PubMed  Google Scholar 

  23. Oncel Acir N, Dadaci Z, Cetiner F, Yildiz M, Alptekin H, Borazan M (2015) Evaluation of the peripapillary retinal nerve fiber layer and ganglion cell-inner plexiform layer measurements in patients with iron deficiency anemia with optical coherence tomography. Cutan Ocul Toxicol 21:1–6

    Google Scholar 

Download references

Acknowledgements

The authors’ special thanks go to Halime YILDIZ, our experienced OCT technician.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Basri Arifoglu.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arifoglu, H.B., Kucuk, B., Duru, N. et al. Assessing posterior ocular structures in β-thalassemia minor. Int Ophthalmol 38, 119–125 (2018). https://doi.org/10.1007/s10792-016-0431-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-016-0431-0

Keywords

Navigation