Skip to main content

Advertisement

Log in

Changes of anterior chamber architecture induced by laser peripheral iridotomy in acute angle closure crisis

  • Original Paper
  • Published:
International Ophthalmology Aims and scope Submit manuscript

Abstract

In acute angle closure crisis (AAC), a laser peripheral iridotomy (LPI) is performed to balance the pressure gradient between anterior and posterior chamber. The hereby induced changes in anterior chamber architecture were analyzed using Scheimpflug photography (SP). SP was performed in eyes with AAC and in fellow eyes (FE) before and after LPI. Intraocular pressure (IOP), anterior chamber volume (ACV), anterior chamber depth (ACD), anterior chamber angle width (ACA), and central corneal thickness (CCT) were analyzed. The group consisted of 18 patients (14♀, 4♂; 69 ± 11 years) with unilateral AAC. Mean IOP in AAC eyes decreased from 49.3 ± 2.8 mmHg at presentation to 13.7 ± 1.6 mmHg after LPI (p = 0.001). Mean ACV increased from 48.2 ± 3.6 to 60.6 ± 2.4 mm3 in AAC eyes (p < 0.001) and from 60.4 ± 4.6 to 74.1 ± 3.7 mm3 in the FE (p < 0.001). Mean ACD increased from 1.27 ± 0.08 to 1.44 ± 0.06 mm (p = 0.01) in AAC eyes and decreased in FE from 1.72 ± 0.08 to 1.59 ± 0.04 mm (p = 0.5). Mean ACA increased from 16.8 ± 1.6 to 20.5 ± 1.5° in AAC eyes (p = 0.01) and from 18.5 ± 1.4 to 22.6 ± 1.5° in the FE (p = 0.01). Mean CCT did not change significantly in both groups after LPI (AAC p = 0.09; FE p = 0.9) but a statistically significant difference between the two groups was detectable before LPI (p = 0.04) which disappeared thereafter (p = 0.14). Using Scheimpflug photography, a significant difference of ACV, ACD, and ACA can be detected after LPI in eyes suffering from acute angle closure crisis which demonstrates the effectiveness of LPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aung T, Husain R, Gazzard G, Chan YH, Devereux JG, Hoh ST, Seah SK (2004) Changes in retinal nerve fiber layer thickness after acute primary angle closure. Ophthalmology 111:1475–1479

    Article  PubMed  Google Scholar 

  2. Bonomi L, Marchini G, Marraffa M, Bernardi P, De Franco I, Perfetti S, Varotto A (2000) Epidemiology of angle-closure glaucoma: prevalence, clinical types, and association with peripheral anterior chamber depth in the Egna-Neumarket Glaucoma Study. Ophthalmology 107:998–1003

    Article  CAS  PubMed  Google Scholar 

  3. Klein BE, Klein R, Sponsel WE, Franke T, Cantor LB, Martone J, Menage MJ (1992) Prevalence of glaucoma. The beaver dam eye study. Ophthalmology 99:1499–1504

    Article  CAS  PubMed  Google Scholar 

  4. Quigley HA (1996) Number of people with glaucoma worldwide. Br J Ophthalmol 80:389–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Ramesh S, Maw C, Sutton CJ, Gandhewar JR, Kelly SP (2005) Ethnic aspects of acute primary angle closure in a UK mulicultural conurbation. Eye 19:1271–1275

    Article  CAS  PubMed  Google Scholar 

  6. Seah SK, Foster PJ, Chew PT, Jap A, Oen F, Fam HB, Lim AS (1997) Incidence of acute primary angle-closure glaucoma in Singapore. An island-wide survey. Arch Ophthalmol 115:1436–1440

    Article  CAS  PubMed  Google Scholar 

  7. Sihota R, Lakshmaiah NC, Agarwal HC, Pandey RM, Titiyal JS (2000) Ocular parameters in the subgroups of angle closure glaucoma. Clin Exp Ophthalmol 28:253–258

    Article  CAS  Google Scholar 

  8. Sun X, Ji X, Zheng Y, Guo B (1994) Primary chronic angle-closure glaucoma in Chinese—a clinical exploration of its pathogenesis and natural course. Yan Ke Xue Bao 10:176–185

    CAS  PubMed  Google Scholar 

  9. Alsbirk PH (1974) Anterior chamber depth in Greenland Eskimos. I. A population study of variation with age and sex. Acta Ophthalmol (Copenh) 52:551–564

    Article  CAS  Google Scholar 

  10. Foster PJ, Alsbirk PH, Baasanhu J, Munkhbayar D, Uranchimeg D, Johnson GJ (1997) Anterior chamber depth in Mongolians: variation with age, sex, and method of measurement. Am J Ophthalmol 124:53–60

    Article  CAS  PubMed  Google Scholar 

  11. Lowe RF (1970) Aetiology of the anatomical basis for primary angle-closure glaucoma. Biometrical comparisons between normal eyes and eyes with primary angle-closure glaucoma. Br J Ophthalmol 54:161–169

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Lowe RF, Clark BA (1973) Radius of curvature of the anterior lens surface. Correlations in normal eyes and in eyes involved with primary angle-closure glaucoma. Br J Ophthalmol 57:471–474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Snow JT (1977) Value of prophylactic peripheral iridectomy on the second eye in angle-closure glaucoma. Trans Ophthalmol Soc UK 97:189–191

    CAS  PubMed  Google Scholar 

  14. Shaffer RN (1960) Primary glaucomas. Gonioscopy, ophthalmoscopy and perimetry. Trans Am Acad Ophthalmol Otolaryngol 64:112–127

    CAS  PubMed  Google Scholar 

  15. Scheie HG (1957) Width and pigmentation of the angle of the anterior chamber; a system of grading by gonioscopy. AMA Arch Ophthalmol 58:510–512

    Article  CAS  PubMed  Google Scholar 

  16. Spaeth GL (1971) The normal development of the human anterior chamber angle: a new system of descriptive grading. Trans Ophthalmol Soc UK 91:709–739

    CAS  PubMed  Google Scholar 

  17. Shankar H, Taranath D, Santhirathelagan CT, Pesudovs K (2008) Anterior segment biometry with the Pentacam: comprehensive assessment of repeatability of automated measurements. J Cataract Refract Surg 34:103–113

    Article  PubMed  Google Scholar 

  18. Chen D, Lam AK (2009) Reliability and repeatability of the Pentacam on corneal curvatures. Clin Exp Optom 92:110–118

    Article  PubMed  Google Scholar 

  19. Miranda MA, Radhakrishnan H, O’Donnell C (2009) Repeatability of oculus pentacam metrics derived from corneal topography. Cornea 28:657–666

    Article  PubMed  Google Scholar 

  20. Kawamorita T, Uozato H, Kamiya K, Bax L, Tsutsui K, Aizawa D, Shimizu K (2009) Repeatability, reproducibility, and agreement characteristics of rotating Scheimpflug photography and scanning-slit corneal topography for corneal power measurement. J Cataract Refract Surg 35:127–133

    Article  PubMed  Google Scholar 

  21. Talajic JC, Lesk MR, Nantel-Battista M, Harasymowycz PJ (2013) Anterior segment changes after pilocarpine and laser iridotomy for primary angle-closure suspects with scheimpflug photography. J Glaucoma 22(9):776–779

    Article  PubMed  Google Scholar 

  22. Antoniazzi E, Pezzotta S, Delfino A, Bianchi PE (2010) Anterior chamber measurements taken with Pentacam: an objective tool in laser iridotomy. Eur J Ophthalmol 20:517–522

    PubMed  Google Scholar 

  23. Jain R, Grewal D, Grewal SP (2013) Quantitative analysis of anterior chamber following peripheral laser iridotomy using Pentacam in eyes with primary angle closure. Eur J Ophthalmol 23(1):55–60

    Article  Google Scholar 

  24. Li S, Wang H, Mu D, Fu J, Wang X, Wang J, Wang N (2010) Prospective evaluation of changes in anterior segment morphology after laser iridotomy in Chinese eyes by rotating Scheimpflug camera imaging. Clin Exp Ophthalmol 38:10–14

    Article  Google Scholar 

  25. Muller M, Dahmen G, Porksen E, Geerling G, Laqua H, Ziegler A, Hoerauf H (2006) Anterior chamber angle measurement with optical coherence tomography: intraobserver and interobserver variability. J Cataract Refract Surg 32:1803–1808

    Article  PubMed  Google Scholar 

  26. Muller M, Geerling G (2008) Anterior segment optical coherence tomography in glaucoma. Klin Monatsbl Augenheilkd 225:194–199

    Article  CAS  PubMed  Google Scholar 

  27. Karandish A, Wirbelauer C, Haberle H, Pham DT (2006) OCT-goniometry before and after iridotomy in angle-closure glaucoma. Ophthalmologe 103:35–39

    Article  CAS  PubMed  Google Scholar 

  28. Ang GS, Wells AP (2010) Changes in Caucasian eyes after laser peripheral iridotomy: an anterior segment optical coherence tomography study. Clin Exp Ophthalmol 38:778–785

    Article  Google Scholar 

  29. See JL, Chew PT, Smith SD, Nolan WP, Chan YH, Huang D, Zheng C, Foster PJ, Aung T, Friedman DS (2007) Changes in anterior segment morphology in response to illumination and after laser iridotomy in Asian eyes: an anterior segment OCT study. Br J Ophthalmol 91:1485–1489

    Article  PubMed Central  PubMed  Google Scholar 

  30. Lee RY, Kasuga T, Cui QN, Huang G, He M, Lin SC (2013) Association between baseline angle width and induced angle opening following prophylactic laser peripheral iridotomy. Invest Ophthalmol Vis Sci 54:3763–3770

    Article  PubMed Central  PubMed  Google Scholar 

  31. Lee KS, Sung KR, Shon K, Sun JH, Lee JR (2013) Longitudinal changes in anterior segment parameters after laser peripheral iridotomy assessed by anterior segment optical coherence tomography. Invest Ophthalmol Vis Sci 54:3166–3170

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

No conflicting relationship exists for any author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. D. Unterlauft.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unterlauft, J.D., Yafai, Y. & Wiedemann, P. Changes of anterior chamber architecture induced by laser peripheral iridotomy in acute angle closure crisis. Int Ophthalmol 35, 549–556 (2015). https://doi.org/10.1007/s10792-014-9982-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10792-014-9982-0

Keywords

Navigation