Skip to main content
Log in

Stress–Strain State of Flexible Orthotropic Cylindrical Shells with a Reinforced Circular Hole

  • Published:
International Applied Mechanics Aims and scope

The stress–strain state of flexible orthotropic cylindrical shells with a reinforced circular hole under static loading is analyzed numerically. The incremental-loading procedure, modified Newton–Kantorovich method, and finite-element method are used. The effect of geometrical nonlinearity, the orthotropy of the material, and the stiffness of the reinforcement in a shell subject to uniform internal pressure on the distribution of stresses, strains, and displacements along the hole edge and in the zone of their concentration is studied

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. A. Zhilin, “General theory of ribbed shells,” in: Strength of Hydraulic Turbines [in Russian], Issue 88, Tr. TsKTI, Leningrad (1968), pp. 46–70.

  2. V. V. Karpov, Models and Algorithms for the Strength and Stability Analyses of Reinforced Shells of Revolution, Part 1 of Strength and Stability of Reinforced Shells of Revolution [in Russian], Fizmatlit, Moscow (2010).

    Google Scholar 

  3. V. V. Karpov and A. A. Semenov, “Mathematical model of the deformation of reinforced orthotropic shells of revolution,” Inzh.-Stroit. Zh., No. 5, 100–106 (2013).

  4. À. N. Guz, I. S. Chernyshenko, V. N. Chekhov, et al., Theory of Thin Shells Weakened by Holes, Vol. 1 of the five-volume series Methods of Shell Design [in Russian], Naukova Dumka, Kyiv (1980).

    Google Scholar 

  5. P. M. A. Areias, J.-H. Song, and T. Belytschko, “A finite-strain quadrilateral shell element based on discrete Kirchhoff–Love constraints,” Int. J. Numer. Meth. Eng., 64, 1166–1206 (2005).

    Article  MATH  Google Scholar 

  6. D. Bushnell, “Analysis of ring-stiffened shells of revolution under combined thermal and mechanical loading,” AIAA J., 9, No. 3, 401–410 (1971).

    Article  MATH  ADS  Google Scholar 

  7. A. N. Guz, E. A. Storozhuk, and I. S. Chernyshenko, “Nonlinear two-dimensional static problems for thin shells with reinforced curvilinear holes,” Int. Appl. Mech., 45, No. 12, 1269–1300 (2009).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  8. L. R. Herrmann and D. M. Campbell, “A finite-element analysis for thin shells,” AIAA J., No. 6, 1842–1847 (1968).

  9. M. W. Hilburger and J. H. Starnes, “Buckling behavior of compression-loaded composite cylindrical shells with reinforced cutouts,” Int. J. Non-Linear Mech., 40, No. 7, 1005–1021 (2005).

    Article  MATH  ADS  Google Scholar 

  10. A. Kaufman and D. Spera, “Investigation of the elastic-plastic stress state around reinforced opening in a spherical shell,” NASA Sci. Tech. Publ., Washington (1965).

  11. A. Kharat and V. V. Kulkarni, “Stress concentration at openings in pressure vessels – A review,” Int. J. Innov. Res. Sci., Eng. Tech., 2, No. 3, 670–678 (2013).

    Google Scholar 

  12. N. V. Maiborodina and V. F. Meish, “Forced vibrations of ellipsoidal shells reinforced with transverse ribs under a nonstationary distributed load,” Int. Appl. Mech., 49, No. 6, 693–701 (2013).

    Article  MATH  ADS  Google Scholar 

  13. V. A. Maximyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Nonlinear deformation of thin isotropic and orthotropic shells of revolution with reinforced holes and rigid inclusions,” Int. Appl. Mech., 49, No. 6, 685–692 (2013).

    Article  ADS  Google Scholar 

  14. V. A. Maximyuk, E. A. Storozhuk, and I. S. Chernyshenko, “Stress state of flexible composite shells with stiffened holes,” Int. Appl. Mech., 50, No. 5, 558–565 (2014).

    Article  ADS  Google Scholar 

  15. S. S. Murthy and R. H. Gallagher, “Anisotropic cylindrical shell element based on discrete Kirchhoff theory,” Int. J. Numer. Meth. Eng., 19, No. 12, 1805–1823 (1983).

    Article  MATH  Google Scholar 

  16. W. D. Pilkey and D. D. Pilkey, Peterson’s Stress Concentration Factors, John Wiley & Sons, New York (2008).

    Google Scholar 

  17. M. S. Qatu, E. Asadi, and W. Wang, “Review of recent literature on static analyses of composite shells: 2000–2010,” Open J. Comp. Mater., No. 2, 61–86 (2012).

  18. E. Senocak and A. M. Waas, “Optimally reinforced cutouts in laminated circular cylindrical shells,” Int. J. Mech. Sci., 38, No. 2, 121–140 (1996).

    Article  MATH  Google Scholar 

  19. S. Shi, Z. Sun, M. Ren, H. Chen, and X. Hu, “Buckling response of advanced grid stiffened carbon-fiber composite cylindrical shells with reinforced cutouts,” Compos. Part B: Eng., 44, No. 1, 26–33 (2013).

    Article  Google Scholar 

  20. E. A. Storozhuk and I. S. Chernyshenko, “Reinforcement of the contour of a hole in an inelastic shell,” Int. Appl. Mech., 24, No. 11, 1064–1068 (1988).

    MATH  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Maksimyuk.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 51, No. 4, pp. 71–80, July–August 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksimyuk, V.A., Storozhuk, E.À. & Chernyshenko, I.S. Stress–Strain State of Flexible Orthotropic Cylindrical Shells with a Reinforced Circular Hole. Int Appl Mech 51, 425–433 (2015). https://doi.org/10.1007/s10778-015-0703-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-015-0703-9

Keywords

Navigation