Skip to main content
Log in

Development of instability in a rotating elastoplastic annular disk

  • Published:
International Applied Mechanics Aims and scope

The paper proposes a method, based on perfect-plasticity and perturbation theories, for instability analysis of an annular flat disk tightly set on a shaft with no interference fit. The perturbed elastoplastic state of the rotating disk is analyzed by determining the stress–strain state of a fixed elastic annular plate under in-plane loading. A characteristic equation of the first order for the critical radius of the plastic zone in the disk subject to internal pressure is derived. The critical rotation rate is calculated for different parameters of the disk

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. B. Biezeno and R. Grammel, Engineering Dynamics, Vol. 1, Blackie, London (1955).

    Google Scholar 

  2. A. N. Guz and Yu. N. Nemish, Boundary-Shape Perturbation Method in Continuum Mechanics [in Russian], Vyshcha Shkola, Kyiv (1989).

    Google Scholar 

  3. L. V. Ershov, “General relations of the perturbation method in axisymmetric problems of small elastoplastic deformation theory,” in: Problems of Solid and Rock Mechanics [in Russian], Izd. Moskov. Gos. Gorn. Univ., Moscow (2001), pp. 37–41.

    Google Scholar 

  4. L. V. Ershov, “Approximate solution of axisymmetric elastoplastic problems by the perturbation method,” in: Problems of Solid and Rock Mechanics [in Russian], Izd. Moskov. Gos. Gorn. Univ., Moscow (2001), pp. 20–32.

    Google Scholar 

  5. L. V. Ershov, “Elastoplastic state of a cam set on an elastic shaft with an interference fit,” in: Problems of Solid and Rock Mechanics [in Russian], Izd. Moskov. Gos. Gorn. Univ., Moscow (2001), pp. 14–32.

    Google Scholar 

  6. L. V. Ershov and D. D. Ivlev, “Loss of stability of rotating disks,” Izv. AN SSSR, Otd. Tekhn. Nauk, No. 1, 124–125 (1958).

  7. D. D. Ivlev, “Loss of load-carrying capacity of rotating nearly circular disks,” Izv. AN SSSR, Otd. Tekhn. Nauk, No. 1, 141–144 (1957).

  8. D. D. Ivlev and L. V. Ershov, Perturbation Method in the Theory of Elastoplastic Body [in Russian], Nauka, Moscow (1978).

    Google Scholar 

  9. D. M. Lila and A. A. Martynyuk, “Loss of stability of a rotating elastoplastic circular disk,” Dop. NAN Ukrainy, No. 1, 44–51 (2011).

  10. S. V. Matveev, “Elastoplastic state of a medium with a horizontal cylindrical cavity, with gravity taken into account,” Vestn. Samar. Gos. Univ., Estestvennonauch. Ser., No. 2 (52), 107–114 (2007).

  11. A. Nadai, Theory of Flow and Fracture of Solids, Vol. 1, McGraw-Hill, New York (1950).

    Google Scholar 

  12. V. V. Sokolovskii, Theory of Plasticity [in Russian], Vysshaya Shkola, Moscow (1969).

    Google Scholar 

  13. M. E. Babeshko and Yu. N. Shevchenko, “On two approaches to determining the axisymmetric elastoplastic stress–strain state of laminated shells made of isotropic and transversely isotropic bimodulus materials,” Int. Appl. Mech., 44, No. 6, 644–652 (2008).

    Article  ADS  Google Scholar 

  14. I. S. Chernyshenko, E. A. Storozhuk, and I. B. Rudenko, “Elastoplastic state of flexible spherical shells with a reinforced elliptic hole,” Int. Appl. Mech., 44, No. 12, 1397–1404 (2008).

    Article  ADS  Google Scholar 

  15. V. P. Golub, A. V. Romanov, and N. V. Romanova, “Nonlinear creep and ductile creep rupture of perfectly elastoplastic rods under tension,” Int. Appl. Mech., 44, No. 4, 459–470 (2008).

    Article  ADS  Google Scholar 

  16. L. A. Kipnis and T. V. Polishchuk, “Analysis of the plastic zone at the corner point of interface,” Int. Appl. Mech., 45, No. 2, 159–168 (2009).

    Article  ADS  Google Scholar 

  17. E. E. Kurchakov and G. V. Gavrilov, “Formation of the plastic zone in an anisotropic body with a crack,” Int. Appl. Mech., 44, No. 9, 982–997 (2008).

    Article  ADS  Google Scholar 

  18. D. M. Lila and A. A. Martynyuk, “Stability loss of rotating elastoplastic discs of the specific form,” Appl. Math., 2, No. 5, 579–585 (2011).

    Article  Google Scholar 

  19. M. Maziere, J. Besson, S. Forest, B. Tanguy, H. Chalons, and F. Vogel, “Overspeed burst of elastoviscoplastic rotating disks, Part I: Analytical and numerical stability analyses,” European J. Mech. A/Solids, 28, No. 1, 36–44 (2009).

    Article  ADS  MATH  Google Scholar 

  20. M. Maziere, J. Besson, S. Forest, B. Tanguy, H. Chalons, and F. Vogel, ”Overspeed burst of elastoviscoplastic rotating disks: Part II – Burst of a superalloy turbine disk,” European J. Mech. A/Solids, 28, No. 3, 428–432 (2009).

    Article  ADS  MATH  Google Scholar 

  21. Yu. V. Nemirovskii and A. P. Yankovskii, “Viscoplastic deformation of reinforced plates with varying thickness under explosive loads,” Int. Appl. Mech., 44, No. 2, 188–199 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Lila.

Additional information

Translated from Prikladnaya Mekhanika, Vol. 48, No. 2, pp. 127–136, March–April 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lila, D.M., Martynyuk, A. Development of instability in a rotating elastoplastic annular disk. Int Appl Mech 48, 224–233 (2012). https://doi.org/10.1007/s10778-012-0518-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10778-012-0518-x

Keywords

Navigation