Skip to main content
Log in

Quantum Encoding and Entanglement in Terms of Phase Operators Associated with Harmonic Oscillator

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Realization of qudit quantum computation has been presented in terms of number operator and phase operators associated with one-dimensional harmonic oscillator and it has been demonstrated that the representations of generalized Pauli group, viewed in harmonic oscillator operators, allow the qudits to be explicitly encoded in such systems. The non-Hermitian quantum phase operators contained in decomposition of the annihilation and creation operators associated with harmonic oscillator have been analysed in terms of semi unitary transformations (SUT) and it has been shown that the non-vanishing analytic index for harmonic oscillator leads to an alternative class of quantum anomalies. Choosing unitary transformation and the Hermitian phase operator free from quantum anomalies, the truncated annihilation and creation operators have been obtained for harmonic oscillator and it has been demonstrated that any attempt of removal of quantum anomalies leads to absence of minimum uncertainty.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ezkov, A., Nifanava, A., Ventura, D.: Inform. Sci. 128, 271–293 (2000)

    Article  MathSciNet  Google Scholar 

  2. Wang, Z.S., Wu, C., Feng, X.L., Kwek, L.C., Lai, C.H., Oh, C.H., Vedral, V.: Phys. Rev. A76, 044303–307 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Steane, A.: Rep. Prog. Phys. 61, 117 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  4. Sudhbery, A.: J. Phys. A34, 643 (2001)

    ADS  Google Scholar 

  5. Luque, J. G., Thiboo, J. Y., Tounmazet, F.: Math. Structure Comput. Sci. 17, 1133 (2007)

    Article  Google Scholar 

  6. Luque, J. G., Thiboo, J.: J. Phys. A39, 371 (2006)

    ADS  Google Scholar 

  7. Dokovic, D. Z., Osreloh, A.: J. Math. Phys. 50, 033509 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bartlett, S.D., de Guise, H., Sanders, B.C.: Phys. Rev. A65, 052316 (2002)

    Article  ADS  Google Scholar 

  9. Vicary, J.: Int. Journ. Theor. Phys. 47(12), 3408 (2008)

    Article  MathSciNet  Google Scholar 

  10. Milman, P., Mosseri, R.: Phys. Rev. Lett. 90, 230403 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  11. Milman, P.: Phys. Rev. A73, 062118 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  12. Souza, C.E.R., Huguenin, J.A.O., Milman, P., Khoury, A.Z.: Phys. Rev. Lett. 99, 160401 (2007)

    Article  ADS  Google Scholar 

  13. Du, J., Zhu, J., Shi, M., Peng, X., Suter, D.: Phys. Rev. A76, 042121 (2007)

    Article  ADS  Google Scholar 

  14. Oxman, L. E., Khoury, A.Z.: Phys. Rev. Lett. 106, 240503 (2011)

    Article  ADS  Google Scholar 

  15. Singh, M.P., Rajput, B. S.: Int. Journ. Theor. Phys. 52, 4237–4255 (2013)

    Article  MathSciNet  Google Scholar 

  16. Johansson, M., Ericsson, M., Singh, K., Sjoqvist, E., Williamson, M. S. Phys. Rev. A85, 32112 (2012)

    Article  ADS  Google Scholar 

  17. Singh, M. P., Rajput, B.S.: Euro. Phys. J. Plus 129(57), 1–13 (2014)

    Google Scholar 

  18. Singh, M. P., Rajput, B. S.: Int. Journ. Theor. Phys. 53(9), 3226–3238 (2014)

    Article  Google Scholar 

  19. Singh, M. P., Rajput, B. S.: Int J. Theor. Phys. 54(10), 3443 (2015)

    Article  MathSciNet  Google Scholar 

  20. Luque, J.G., Thiboo, J.Y.: Phys. Rev. A67, 042303 (2003)

    Article  ADS  Google Scholar 

  21. Gottesman, D., Kitaev, A., Preskill, J. Phys. Rev. A64, 012310 (2001)

    Article  ADS  Google Scholar 

  22. Pegg, D., Barnett, S.: J. Mod. Optics 44, 225 (1997)

    ADS  MathSciNet  Google Scholar 

  23. Pegg, D. T., Barnett, S. M.: Phys. Rev. A39, 1665 (1989)

    Article  ADS  Google Scholar 

  24. Fujikawa, K.: Phys. Rev. A52, 3299 (1995)

    Article  ADS  Google Scholar 

  25. Hirayama, M., Zhang, H. M.: Prog. Theo. Phys. 94, 989 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  26. Dirac, P. A. M.: Soc. Proc. R. London Ser. A114, 243 (1927)

    Article  ADS  Google Scholar 

  27. Susskind, L., Glogower, J.: Physics 1, 49 (1964)

    Google Scholar 

  28. Fujikawa, K.: Phys. Rev. D21, 2848 (1980)

    ADS  MathSciNet  Google Scholar 

  29. Callias, C.: Math. Commun. Phys. 62, 213 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  30. Hirayama, M.: Theo. Prog. Phys. 70, 1444 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  31. Atyah, M. F., Singer, I. M.: Ann. Maths. 87, 484 (1968)

    Article  Google Scholar 

  32. Bartlett, S. D., Sanders, B.C., Varcoe, B.T.H., de Guise, H.: Experimental Implementation of Quantum Computation. In: Clark, R. (ed.) (Rinton, Princeton. N.J, 2001), pp 344–347

Download references

Acknowledgments

Author Manu Pratap Singh thankfully acknowledges the financial support of University Grants Commission (UGC), New Delhi (India) in the form of a major research project: MRP-Major-Comp-2013-39460.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. S. Rajput.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, M.P., Rajput, B.S. Quantum Encoding and Entanglement in Terms of Phase Operators Associated with Harmonic Oscillator. Int J Theor Phys 55, 4393–4405 (2016). https://doi.org/10.1007/s10773-016-3062-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3062-3

Keywords

Navigation