Skip to main content
Log in

Tunable Optomechanically Induced Absorption in a Hybrid Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We study the tunable optomechanically induced absorption (OMIA) with the quantized field in the system, which consists of a driven cavity and a mechanical resonator with a super-conducting charge qubit via Jaynes-Cummings interaction. Such a OMIA can be achieved by controlling the strength of the Jaynes-Cummings interaction. Moreover, our work shows this OMIA for the quantized fields can be robust against cavity decay in somehow. With the combination of optomechanically induced transparency (OMIT), our proposal may have paved a new avenue towards quantum photon router.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wei, L.F., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. Lett. 97, 237201 (2006)

    Article  ADS  Google Scholar 

  2. Marquardt, F., Girvin, S.M.: Physics 2, 40 (2009)

    Article  Google Scholar 

  3. Guo, Y., Li, K., Nie, W., Li, Y.: Phys. Rev. A 90, 053841 (2014)

    Article  ADS  Google Scholar 

  4. Ramos, T., Sudhir, V., Stannigel, K., Zoller, P., Kippenberg, T.J.: Phys. Rev. Lett. 110, 193602 (2013)

    Article  ADS  Google Scholar 

  5. Lü, X.Y., Liao, J.Q., Tian, L., Nori, F.: Phys. Rev. A 91, 013834 (2015)

  6. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Rev. Mod. Phys. 86, 1391 (2014)

    Article  ADS  Google Scholar 

  7. Rabl, P.: Phys. Rev. Lett. 107, 063601 (2011)

    Article  ADS  Google Scholar 

  8. Gong, Z.R., Ian, H., Liu, Y.X., Sun, C.P., Nori, F.: Phys. Rev. A 80, 065801 (2009)

    Article  ADS  Google Scholar 

  9. Agarwal, G.S., Huang, S.: Phys. Rev. A 81, 041803 (2010)

    Article  ADS  Google Scholar 

  10. Weis, S., Rivière, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Science 330, 1520 (2010)

    Article  ADS  Google Scholar 

  11. Karuza, M., Biancofiore, C., Bawaj, M., Molinelli, C., Galassi, M., Natali, R., Tombesi, P., Giuseppe, G., Vitali, D.: Phys. Rev. A 88, 013804 (2013)

    Article  ADS  Google Scholar 

  12. Xiong, H., Si, L.G., Zheng, A.S., Yang, X., Wu, Y.: Phys. Rev. A 86, 013815 (2012)

    Article  ADS  Google Scholar 

  13. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D., Painter, O.: Nature (London) 472, 69 (2011)

    Article  ADS  Google Scholar 

  14. Wang, Y.D., Clerk, A.A.: Phys. Rev. Lett 108, 153603 (2012)

    Article  ADS  Google Scholar 

  15. Wang, Y.D., Clerk, A.A.: New J. Phys. 14, 105010 (2012)

    Article  ADS  Google Scholar 

  16. Dobrindt, J.M., Wilson-Rae, I., Kippenberg, T.J.: Phys. Rev. Lett. 101, 263602 (2008)

    Article  ADS  Google Scholar 

  17. Gröblacher Hammerer, S.K., Vanner, M.R., Aspelmeyer, M.: Nature (London) 460, 724 (2009)

    Article  ADS  Google Scholar 

  18. Zhang, J.Q., Li, Y., Feng, M., Xu, Y.: Phys. Rev. A 86, 053806 (2012)

    Article  ADS  Google Scholar 

  19. Lezama, A., Barreiro, S., Akulshin, A.M.: Phys. Rev. A 59, 4732 (1999)

    Article  ADS  Google Scholar 

  20. Liu, Y., Davanco, M., Aksyuk, V., Srinivasan, K.: Phys. Rev. Lett. 110, 223603 (2013)

    Article  ADS  Google Scholar 

  21. Qu, K., Agarwal, G.S.: Phys. Rev. A 87, 031802 (2013)

    Article  ADS  Google Scholar 

  22. Zhang, J.Q., Xiong, W., Zhang, S., Li, Y., Feng, M.: Annalen der Physik 527, 180 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Benkert, C., Scully, M.O., Bergou, J., Davidovich, L., Hillery, M., Orszag, M: Phys. Rev. A 41, 2756 (1990)

    Article  ADS  Google Scholar 

  24. Agarwal, G.S., Huang, S.: Phys. Rev. A 85, 021801 (2012)

    Article  ADS  Google Scholar 

  25. Wang, H., Gu, X., Liu, Y.X., Miranowicz, A., Nori, F.: Phys. Rev. A 90, 023817 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant No. 61475045), the Natural Science Foundation of Hunan Province, China (Grant No. 2015JJ3092), and the School Foundation from the Hunan University of Arts and Science (Grants No. 14YB01 and No. 14ZD01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Wang.

Appendix A

Appendix A

A set of linear quantum Langevin equations for the fluctuation operators can be written as

$$\begin{array}{@{}rcl@{}} \mathbf{A}\mathbf{X}=\mathbf{B} \end{array} $$
(A1)

where

$$\begin{array}{@{}rcl@{}} \mathbf{A}=\left( \begin{array}{ccccccc} A_{1}+A_{2} & 0 & -igc_{s} & -igc_{s}^{*} & 0 & 0 & 0 \\ 0 & A_{1}-A_{2} & igc_{s} & 0 & 0 & 0 \\ -igc_{s} & -igc_{s}^{*} & A_{3}+i\omega_{b} & 0 & i\lambda & 0 & 0 \\ igc_{s}^{*} & igc_{s} & 0 & A_{3}-i\omega_{b} & 0 & -i\lambda & 0 \\ 0 & 0 & -i\lambda\sigma_{zs} & 0 & A_{4}+i\omega_{q} & 0 & -igb_{s} \\ 0 & 0 & 0 & i\lambda\sigma_{zs} & 0 & A_{4}-i\omega_{q} & i\lambda b_{s}^{*} \\ 0 & 0 & 2i\lambda(\sigma_{-s})^{*} & -2i\lambda\sigma_{-s} & -2i\lambda b_{s} & 2i\lambda b_{s}^{*} & A_{5} \end{array} \right) \end{array} $$
(A2)

and

$$\begin{array}{@{}rcl@{}} \mathbf{B}=(\sqrt{2\gamma_{c}}c_{in}(\omega),\sqrt{2\gamma_{c}}c_{in}^{\dagger}(-\omega), \sqrt{2\gamma_{b}}b_{in}(\omega),\sqrt{2\gamma_{b}}b_{in}^{\dagger}(-\omega),\sqrt{\gamma_{q}}{\Gamma}_{-}(\omega), \sqrt{\gamma_{q}}{\Gamma}_{+}(-\omega), \sqrt{\gamma_{q}}{\Gamma}_{z}(\omega))^{T}\\ \end{array} $$
(A3)

with A 1 = γ c i ω, A 2 = iΔ c −2i g R e[b s ], A 3 = γ b i ω, \(A_{4}=\frac {\gamma _{q}}{2}-i\omega \) and A 5 = γ q i ω, where R e[Z] is define as the real part of Z.

$$\begin{array}{@{}rcl@{}} E(\omega)&=&\frac{\sqrt{2\gamma_{c}}[2ig^{2}|c_{s}|^{2}C(\omega)+(A_{1}-A_{2})D(\omega)]}{d(\omega)} \\ F(\omega)&=&\frac{2\sqrt{2\gamma_{c}}ig^{2}|a_{s}|^{2}C(\omega)}{d(\omega)} \\ G(\omega)&=&\sqrt{2\gamma_{b}}(A_{1}-A_{2})gc_{s}\{4A_{4}\lambda^{2}|b_{s}|^{2}(iA_{3}+\omega_{b}) +4\lambda^{3}b_{s}Re[\sigma_{-s}](A_{4}+i\omega_{q}) \\ &&+A_{5}(A_{4}+i\omega_{q})[i(A_{3}A_{4}+\lambda^{2}\sigma_{zs}) +\omega_{b}(A_{4}-i\omega_{q})+A_{3}\omega_{q}]\}/d(\omega) \\ H(\omega)&=&i\sqrt{2\gamma_{b}}(A_{1}-A_{2})gc_{s}^{*}\{4A_{4}\lambda^{2}|b_{s}|^{2}(A_{3}+i\omega_{b}) +4\lambda^{3}b_{s}Re[\sigma_{-s}](iA_{4}+\omega_{q}) \\ &&+A_{5}(A_{4}-i\omega_{q})[(A_{3}A_{4}-\lambda^{2}\sigma_{zs}) +i\omega_{b}(A_{4}+i\omega_{q})+iA_{3}\omega_{q}]\}/d(\omega) \\ I(\omega)&=&\{(A_{1}-A_{2})\lambda gc_{s}\sqrt{\gamma_{q}}[-2i\lambda^{2}Re[b_{s}](2\lambda Re[\sigma_{-s}] +2b_{s}\omega_{b})\\ &&+A_{5}(A_{3}A_{4}+\lambda^{2}\sigma_{zs}-iA_{4}\omega_{b}-iA_{3}\omega_{q}-\omega_{b}\omega_{q})]\}/d(\omega) \\ J(\omega)&=&\{-(A_{1}-A_{2})\lambda gc_{s}^{*}\sqrt{\gamma_{q}}[2i\lambda^{2}Re[b_{s}](2\lambda Re[\sigma_{-s}] +2b_{s}^{*}\omega_{b})\\ &&+A_{5}(A_{3}A_{4}+\lambda^{2}\sigma_{zs}+iA_{4}\omega_{b}+iA_{3}\omega_{q}-\omega_{b}\omega_{q})]\}/d(\omega) \\ K(\omega)&=&\{(A_{1}-A_{2})\lambda gc_{s}\sqrt{\gamma_{q}}[A_{5}(A_{3}A_{4}+\lambda^{2}\sigma_{zs}-iA_{4}\omega_{b}-iA_{3}\omega_{q}-\omega_{b}\omega_{q}) \\ &&+2\lambda b_{s}(-A_{3}A_{4}+2\lambda^{2}Re[\sigma_{-s}]+\omega_{b}\omega_{q}+2i\lambda b_{s}\omega_{b}-2i\lambda^{2}Re[b_{s}])]\}/d(\omega)\\ \end{array} $$
(A4)

with

$$\begin{array}{@{}rcl@{}} d(\omega)&=&4iA_{2}g^{2}|c_{s}|^{2}C(\omega)+({A_{1}^{2}}-{A_{2}^{2}})D(\omega) \end{array} $$
(A5)

where \(C(\omega )=iA_{4}A_{5}\lambda ^{2}\sigma _{zs}+4A_{4}\lambda ^{3}Re[b_{s}Re[\sigma _{-s}] +4A_{4}\lambda ^{2}|b_{s}|^{2}\omega _{b}+A_{5}\omega _{b}({A_{4}^{2}}+{\omega _{q}^{2}})\) and \(D(\omega )=\{4A_{4}\lambda ^{2}|b_{s}|^{2}({A_{3}^{2}}+{\omega _{b}^{2}})+A_{5}(A_{3}-i\omega _{b})(A_{4}-i\omega _{q})[A_{3}A_{4}-\lambda ^{2}|\sigma _{zs}|^{2} +i\omega _{b}(A_{4}+i\omega _{q})+iA_{3}\omega _{q}] +2\lambda ^{3}Re[b_{s}][2A_{3}A_{4}Re[\sigma _{-s}] +2A_{3}\omega _{q}Re[\sigma _{-s}]+2\omega _{b}(A_{4}Re[\sigma _{-s}]-\omega _{q}Re[\sigma _{-s}])]\}\). It is clear that the real and imaginary parts, with R e[E(ω)] and I m[E(ω)], describe the absorption and dispersion of the optomechanical system, respectively.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Zhao, YH., He, Z. et al. Tunable Optomechanically Induced Absorption in a Hybrid Optomechanical System. Int J Theor Phys 55, 1324–1332 (2016). https://doi.org/10.1007/s10773-015-2773-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2773-1

Keywords

Navigation